Biofunctionalization of Biomaterials for Accelerated in Situ Endothelialization: A Review

被引:284
作者
de Mel, Achala [1 ]
Jell, Gavin [2 ,3 ]
Stevens, Molly M. [2 ,3 ]
Seifalian, Alexander M. [1 ,4 ]
机构
[1] UCL, Ctr Nanotechnol Biomat & Tissue Engn, UCL Div Surg & Intervent Sci, London, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London, England
[3] Univ London Imperial Coll Sci Technol & Med, Inst Biomed Engn, London, England
[4] Royal Free Hampstead NHS Trust Hosp, Univ Dept Surg, London, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1021/bm800681k
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The higher patency rates of cardiovascular implants, including vascular bypass grafts, stents, and heart valves are related to their ability to inhibit thrombosis, intimal hyperplasia, and calcification. In native tissue, the endothelium plays a major role in inhibiting these processes. Various bioengineering research strategies thereby aspire to induce endothelialization of graft surfaces either prior to implantation or by accelerating in situ graft endothelialization. This article reviews potential bioresponsive molecular components that can be incorporated into (and/or released from) biomaterial surfaces to obtain accelerated in situ endothelialization of vascular grafts. These molecules could promote in situ endothelialization by the mobilization of endothelial progenitor cells (EPC) from the bone marrow, encouraging cell-specific adhesion (endothelial cells (EC) and/or EPC) to the graft and, once attached, by controlling the proliferation and differentiation of these cells. EC and EPC interactions with the extracellular matrix continue to be a principal source of inspiration for material biofunctionalization, and therefore, the latest developments in understanding these interactions will be discussed.
引用
收藏
页码:2969 / 2979
页数:11
相关论文
共 176 条
  • [1] Mobilizing endothelial progenitor cells
    Aicher, A
    Zeiher, AM
    Dimmeler, S
    [J]. HYPERTENSION, 2005, 45 (03) : 321 - 325
  • [2] ALLENDER S, 2007, BRIT EART FDN ANN RE
  • [3] Nanocomposite containing bioactive peptides promote endothelialisation by circulating progenitor cells:: An in vitro evaluation
    Alobaid, N.
    Salacinski, H. J.
    Sales, K. M.
    Ramesh, B.
    Kannan, R. Y.
    Hamilton, G.
    Seifalian, A. M.
    [J]. EUROPEAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY, 2006, 32 (01) : 76 - 83
  • [4] Alobaid N, 2005, CLIN HEMORHEOL MICRO, V33, P209
  • [5] In vitro hemocompatibility testing of UV-modified hyaluronan hydrogels
    Amarnath, LP
    Srinivas, A
    Ramamurthi, A
    [J]. BIOMATERIALS, 2006, 27 (08) : 1416 - 1424
  • [6] Endothelial progenitor cell capture by stents coated with antibody against CD34 - The HEALING-FIM (healthy endothelial accelerated lining inhibits neointimal growth-first in man) registry
    Aoki, J
    Serruys, PW
    van Beusekom, H
    Ong, ATL
    McFadden, EP
    Sianos, G
    van der Giessen, WJ
    Regar, E
    de Feyter, PJ
    Davis, HR
    Rowland, S
    Kutryk, MJB
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2005, 45 (10) : 1574 - 1579
  • [7] The biology of stem cell factor and its receptor C-kit
    Ashman, LK
    [J]. INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 1999, 31 (10) : 1037 - 1051
  • [8] Shear-stress preconditioning and tissue-engineering-based paradigms for generating arterial substitutes
    Baguneid, M
    Murray, D
    Salacinski, HJ
    Fuller, B
    Hamilton, G
    Walker, M
    Seifalian, AM
    [J]. BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY, 2004, 39 (02) : 151 - 157
  • [9] Endothelial progenitor cell proliferation and differentiation is regulated by erythropoietin - Rapid communication
    Bahlmann, FH
    DeGroot, K
    Duckert, T
    Niemczyk, E
    Bahlmann, E
    Boehm, SM
    Haller, H
    Fliser, D
    [J]. KIDNEY INTERNATIONAL, 2003, 64 (05) : 1648 - 1652
  • [10] Bhat VD, 1998, J BIOMED MATER RES, V40, P57, DOI 10.1002/(SICI)1097-4636(199804)40:1<57::AID-JBM7>3.3.CO