High-pressure needle interface for thermoplastic microfluidics

被引:44
作者
Chen, C. F. [1 ,2 ]
Liu, J. [1 ]
Hromada, L. P. [1 ]
Tsao, C. W. [1 ]
Chang, C. C. [2 ]
DeVoe, D. L. [1 ]
机构
[1] Univ Maryland, Dept Mech Engn, Dept Bioengn, College Pk, MD 20742 USA
[2] Natl Taiwan Univ, Inst Appl Math, Taipei 106, Taiwan
基金
美国国家卫生研究院;
关键词
BUILT-IN VALVES; CHIP; INTERCONNECTION;
D O I
10.1039/b812812j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A robust and low dead volume world-to-chip interface for thermoplastic microfluidics has been developed. The high pressure fluidic port employs a stainless steel needle inserted into a mating hole aligned to an embedded microchannel, with an interference fit used to increase pressure resistance. Alternately, a self-tapping threaded needle screwed into a mating hole is also demonstrated. In both cases, the flat bottom needle ports seat directly against the microchannel substrate, ensuring low interfacial dead volumes. Low dispersion is observed for dye bands passing the interfaces. The needle ports offer sufficient pull-out forces for applications such as liquid chromatography that require high internal fluid pressures, with the epoxy-free interfaces compatible with internal microchannel pressures above 40 MPa.
引用
收藏
页码:50 / 55
页数:6
相关论文
共 23 条
[1]   Re-usable quick-release interconnect for characterization of microfluidic systems [J].
Bhagat, Ali Asgar S. ;
Jothimuthu, Preetha ;
Pais, Andrea ;
Papautsky, Ian .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (01) :42-49
[2]   Microfluidic devises connected to fused-silica capillaries with minimal dead volume [J].
Bings, NH ;
Wang, C ;
Skinner, CD ;
Colyer, CL ;
Thibault, P ;
Harrison, DJ .
ANALYTICAL CHEMISTRY, 1999, 71 (15) :3292-3296
[3]   Simple chip-based interfaces for on-line monitoring of supramolecular interactions by nano-ESI MS [J].
Brivio, M ;
Oosterbroek, RE ;
Verboom, W ;
van den Berg, A ;
Reinhoudt, DN .
LAB ON A CHIP, 2005, 5 (10) :1111-1122
[4]  
Chow AW, 2006, METH MOL B, V339, P129, DOI 10.1385/1-59745-076-6:129
[5]   Characterization of interconnects used in PDMS microfluidic systems [J].
Christensen, AM ;
Chang-Yen, DA ;
Gale, BK .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (05) :928-934
[6]   Continuous inertial focusing, ordering, and separation of particles in microchannels [J].
Di Carlo, Dino ;
Irimia, Daniel ;
Tompkins, Ronald G. ;
Toner, Mehmet .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (48) :18892-18897
[7]   Macro-to-micro interfaces for microfluidic devices [J].
Fredrickson, CK ;
Fan, ZH .
LAB ON A CHIP, 2004, 4 (06) :526-533
[8]   Novel interconnection technologies for integrated microfluidic systems [J].
Gray, BL ;
Jaeggi, D ;
Mourlas, NJ ;
van Drieënhuizen, BP ;
Williams, KR ;
Maluf, NI ;
Kovacs, GTA .
SENSORS AND ACTUATORS A-PHYSICAL, 1999, 77 (01) :57-65
[9]   Single molecule measurements within individual membrane-bound ion channels using a polymer-based bilayer lipid membrane chip [J].
Hromada, Louis P. ;
Nablo, Brian J. ;
Kasianowicz, John J. ;
Gaitan, Michael A. ;
DeVoe, Don L. .
LAB ON A CHIP, 2008, 8 (04) :602-608
[10]   Single-molecule DNA amplification and analysis in an integrated microfluidic device [J].
Lagally, ET ;
Medintz, I ;
Mathies, RA .
ANALYTICAL CHEMISTRY, 2001, 73 (03) :565-570