Experimental Observation of a Magnetic-Turbulence Threshold for Runaway-Electron Generation in the TEXTOR Tokamak

被引:72
作者
Zeng, L. [1 ,2 ]
Koslowski, H. R. [1 ]
Liang, Y. [1 ]
Lvovskiy, A. [1 ]
Lehnen, M. [1 ,3 ]
Nicolai, D. [1 ]
Pearson, J. [1 ]
Rack, M. [1 ]
Jaegers, H. [1 ]
Finken, K. H. [4 ]
Wongrach, K. [4 ]
Xu, Y. [5 ]
机构
[1] Forschungszentrum Julich, Inst Energy & Climate Res Plasma Phys IEK 4, Assoc EURATOM FZJ, Trilateral Euregio Cluster, D-52425 Julich, Germany
[2] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[3] ITER Org, F-13115 St Paul Les Durance, France
[4] Univ Dusseldorf, Inst Laser & Plasmaphys, D-40225 Dusseldorf, Germany
[5] Koninklijke Mil Sch, Trilateral Euregio Cluster, Ecole Royale Mil, Assoc Euratom Belgian State,Lab Plasmafys,Lab Phy, B-1000 Brussels, Belgium
关键词
DISRUPTIONS; TERMINATION;
D O I
10.1103/PhysRevLett.110.235003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Magnetic turbulence is observed at the beginning of the current quench in intended TEXTOR disruptions. Runaway electron (RE) suppression has been experimentally found at magnetic turbulence larger than a certain threshold. Below this threshold, the generated RE current is inversely proportional to the level of magnetic turbulence. The magnetic turbulence originates from the background plasma and the amplitude depends strongly on the toroidal magnetic field and plasma electron density. These results explain the previously found toroidal field threshold for RE generation and have to be considered in predictions for RE generation in ITER.
引用
收藏
页数:5
相关论文
共 18 条
[1]   Main characteristics of the fast disruption mitigation valve [J].
Bozhenkov, S. A. ;
Finken, K. -H. ;
Lehnen, M. ;
Wolf, R. C. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (03)
[2]   Generation and suppression of runaway electrons in disruption mitigation experiments in TEXTOR [J].
Bozhenkov, S. A. ;
Lehnen, M. ;
Finken, K. H. ;
Jakubowski, M. W. ;
Wolf, R. C. ;
Jaspers, R. ;
Kantor, M. ;
Marchuk, O. V. ;
Uzgel, E. ;
VanWassenhove, G. ;
Zimmermann, O. ;
Reiter, D. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (10)
[3]   Internal magnetic fluctuations and electron heat transport in the Tore Supra tokamak: Observation by cross-polarization scattering [J].
Colas, L ;
Zou, XL ;
Paume, M ;
Chareau, JM ;
Guiziou, L ;
Hoang, GT ;
Michelot, Y ;
Gresillon, D .
NUCLEAR FUSION, 1998, 38 (06) :903-918
[4]   Scale size of magnetic turbulence in tokamaks probed with 30-MeV electrons [J].
Entrop, I ;
Cardozo, NJL ;
Jaspers, R ;
Finken, KH .
PHYSICAL REVIEW LETTERS, 2000, 84 (16) :3606-3609
[5]   Simulation of runaway electron generation during plasma shutdown by impurity injection in ITER [J].
Feher, T. ;
Smith, H. M. ;
Fulop, T. ;
Gal, K. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (03)
[6]   OBSERVATION OF INFRARED SYNCHROTRON RADIATION FROM TOKAMAK RUNAWAY ELECTRONS IN TEXTOR [J].
FINKEN, KH ;
WATKINS, JG ;
RUSBULDT, D ;
CORBETT, WJ ;
DIPPEL, KH ;
GOEBEL, DM ;
MOYER, RA .
NUCLEAR FUSION, 1990, 30 (05) :859-870
[7]   Magnetic field threshold for runaway generation in tokamak disruptions [J].
Fulop, T. ;
Smith, H. M. ;
Pokol, G. .
PHYSICS OF PLASMAS, 2009, 16 (02)
[8]   Behaviour of disruption generated runaways in JET [J].
Gill, RD ;
Alper, B ;
de Baar, M ;
Hender, TC ;
Johnson, MF ;
Riccardo, V .
NUCLEAR FUSION, 2002, 42 (08) :1039-1044
[9]   Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model [J].
Harvey, RW ;
Chan, VS ;
Chiu, SC ;
Evans, TE ;
Rosenbluth, MN ;
Whyte, DG .
PHYSICS OF PLASMAS, 2000, 7 (11) :4590-4599
[10]   Suppression of runaway electron avalanches by radial diffusion [J].
Helander, P ;
Eriksson, LG ;
Andersson, F .
PHYSICS OF PLASMAS, 2000, 7 (10) :4106-4111