Simulation of runaway electron generation during plasma shutdown by impurity injection in ITER

被引:55
作者
Feher, T. [1 ,2 ,3 ]
Smith, H. M. [1 ,4 ]
Fulop, T. [2 ,3 ]
Gal, K. [5 ]
机构
[1] Max Planck Inst Plasma Phys, Greifswald, Germany
[2] Chalmers, Dept Appl Phys, S-41296 Gothenburg, Sweden
[3] Euratom VR Assoc, Gothenburg, Sweden
[4] Max Planck Inst Sonnensyst Forsch, D-37191 Katlenburg Lindau, Germany
[5] KFKI Res Inst Particle & Nucl Phys, Budapest, Hungary
关键词
DISRUPTION MITIGATION; DIII-D; TOKAMAK; JT-60U;
D O I
10.1088/0741-3335/53/3/035014
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Disruptions in a large tokamak can cause serious damage to the device and should be avoided or mitigated. Massive gas or killer pellet injection are possible ways to obtain a controlled fast plasma shutdown before a natural disruption occurs. In this work, plasma shutdown scenarios with different types of impurities are studied for an ITER-like plasma. Plasma cooling, runaway generation and the associated electric field diffusion are calculated with a 1D-code taking the Dreicer, hot-tail and avalanche runaway generation processes into account. Thin, radially localized sheets with high temperature can be created after the thermal quench, and the Dreicer and avalanche processes produce a high runaway current inside these sheets. At high impurity concentration the Dreicer process is suppressed but hot-tail runaways are created. Favorable thermal and current quench times can be achieved with a mixture of deuterium and neon or argon. However, to prevent the avalanche process from creating a significant runaway current fraction, it is found to be necessary to include runaway losses in the model.
引用
收藏
页数:17
相关论文
共 29 条
[1]   Study of plasma termination using high-Z noble gas puffing in the JT-60U tokamak [J].
Bakhtiari, M ;
Tamai, H ;
Kawano, Y ;
Kramer, GJ ;
Isayama, A ;
Nakano, T ;
Kamiya, Y ;
Yoshino, R ;
Miura, Y ;
Kusama, Y ;
Nishida, Y .
NUCLEAR FUSION, 2005, 45 (05) :318-325
[2]   Destabilization of fast-ion-induced long sawteeth by localized current drive in the JET tokamak [J].
Eriksson, LG ;
Mueck, A ;
Sauter, O ;
Coda, S ;
Mantsinen, MJ ;
Mayoral, ML ;
Westerhof, E ;
Buttery, RJ ;
McDonald, D ;
Johnson, T ;
Noterdaeme, JM ;
de Vries, P .
PHYSICAL REVIEW LETTERS, 2004, 92 (23) :235004-1
[3]   Simulation of runaway electrons during tokamak disruptions [J].
Eriksson, LG ;
Helander, P .
COMPUTER PHYSICS COMMUNICATIONS, 2003, 154 (03) :175-196
[4]   Magnetic field threshold for runaway generation in tokamak disruptions [J].
Fulop, T. ;
Smith, H. M. ;
Pokol, G. .
PHYSICS OF PLASMAS, 2009, 16 (02)
[5]   Runaway electron production in DIII-D killer pellet experiments, calculated with the CQL3D/KPRAD model [J].
Harvey, RW ;
Chan, VS ;
Chiu, SC ;
Evans, TE ;
Rosenbluth, MN ;
Whyte, DG .
PHYSICS OF PLASMAS, 2000, 7 (11) :4590-4599
[6]   Suppression of runaway electron avalanches by radial diffusion [J].
Helander, P ;
Eriksson, LG ;
Andersson, F .
PHYSICS OF PLASMAS, 2000, 7 (10) :4106-4111
[7]   Measurements of injected impurity assimilation during massive gas injection experiments in DIII-D [J].
Hollmann, E. M. ;
Jernigan, T. C. ;
Parks, P. B. ;
Boedo, J. A. ;
Evans, T. E. ;
Groth, M. ;
Humphreys, D. A. ;
James, A. N. ;
Lanctot, M. J. ;
Nishijima, D. ;
Rudakov, D. L. ;
Scott, H. A. ;
Strait, E. J. ;
Van Zeeland, M. A. ;
Wesley, J. C. ;
West, W. P. ;
Wu, W. ;
Yu, J. H. .
NUCLEAR FUSION, 2008, 48 (11)
[8]  
Iida H., 2004, G73DDD2W02 NAR ITER
[9]   Magnetohydrodynamic simulations of massive gas injection into Alcator C-Mod and DIII-D plasmas [J].
Izzo, V. A. ;
Whyte, D. G. ;
Granetz, R. S. ;
Parks, P. B. ;
Hollmann, E. M. ;
Lao, L. L. ;
Wesley, J. C. .
PHYSICS OF PLASMAS, 2008, 15 (05)
[10]   A fast shutdown technique for large tokamaks [J].
Jardin, SC ;
Schmidt, GL ;
Fredrickson, ED ;
Hill, KW ;
Hyun, J ;
Merrill, BJ ;
Sayer, R .
NUCLEAR FUSION, 2000, 40 (05) :923-933