CREB4, a transmembrane bZip transcription factor and potential new substrate for regulation and cleavage by S1P

被引:93
作者
Stirling, J [1 ]
O'Hare, P [1 ]
机构
[1] Marie Curie Res Inst, Oxted RH8 0TL, England
关键词
D O I
10.1091/mbc.E05-06-0500
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Regulated intramembrane proteolysis of the factors SREBP and ATF6 represents a central control mechanism in sterol homeostasis and stress response within the endoplasmic reticulum. Here, we compare localization of ATF6-related bZip factors CREB4, CREB-H, Luman, and OASIS. These factors contain the defining features of a bZip domain, a predicted transmembrane domain and an adjacent cleavage site for the Golgi protease S1P, with conserved features which indicate that it represents a specific subclass of S1P sites. Each factor localizes to the endoplasmic reticulum (ER), but a population of CREB4 was also observed in the Golgi. Deletion of the transmembrane domain in CREB4 resulted in efficient nuclear accumulation. An N-terminal variant of CREB4 containing the BZIp domain potently activated expression from a target gene containing ATF6 binding sites and from the promoter for the ER chaperone GRP78/BIP. CREB4 was cleaved in a site-specific manner in response to brefeldin A disruption of the Golgi or by coexpression with S1P but only after deletion or substitution of its C-terminal lumenal domain. Thus, S1P cleavage of CREB4 may be suppressed by a determinant in the C-terminal region. Dithiothreitol induced more complete transport of CREB4 to the Golgi, but not cleavage. Together, the data identify at least one additional bZip factor whose localization responds to ER stress, and we propose a model based on these results that indicates additional levels of control of this novel class of transcription factors.
引用
收藏
页码:413 / 426
页数:14
相关论文
共 43 条
[1]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[2]   A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood [J].
Brown, MS ;
Goldstein, JL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (20) :11041-11048
[3]   Molecular cloning and characterization of a novel human cAMP response element-binding (CREB) gene (CREB4) [J].
Cao, GT ;
Ni, XH ;
Jiang, M ;
Ma, YS ;
Cheng, HP ;
Guo, LC ;
Ji, CN ;
Gu, SH ;
Xie, Y ;
Mao, YM .
JOURNAL OF HUMAN GENETICS, 2002, 47 (07) :373-376
[4]   HIGH-EFFICIENCY TRANSFORMATION OF MAMMALIAN-CELLS BY PLASMID DNA [J].
CHEN, C ;
OKAYAMA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2745-2752
[5]   The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi [J].
Chen, X ;
Shen, J ;
Prywes, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (15) :13045-13052
[6]   Transport-dependent proteolysis of SREBP: Relocation of Site-1 protease from Golgi to ER obviates the need for SREBP transport to Golgi [J].
DeBose-Boyd, RA ;
Brown, MS ;
Li, WP ;
Nohturfft, A ;
Goldstein, JL ;
Espenshade, PJ .
CELL, 1999, 99 (07) :703-712
[7]   Cleavage site for sterol-regulated protease localized to a Leu-Ser bond in the lumenal loop of sterol regulatory element-binding protein-2 [J].
Duncan, EA ;
Brown, MS ;
Goldstein, JL ;
Sakai, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (19) :12778-12785
[8]   Biosynthesis and cellular trafficking of the convertase SKI-1/S1P - Ectodomain shedding requires SKI-1 activity [J].
Elagoz, A ;
Benjannet, S ;
Mammarbassi, A ;
Wickham, L ;
Seidah, NG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (13) :11265-11275
[9]   Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins [J].
Espenshade, PJ ;
Cheng, D ;
Goldstein, JL ;
Brown, MS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22795-22804
[10]   Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress [J].
Haze, K ;
Yoshida, H ;
Yanagi, H ;
Yura, T ;
Mori, K .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (11) :3787-3799