Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach

被引:112
作者
Gu, Yuhua [1 ]
Kumar, Virendra [1 ]
Hall, Lawrence O. [2 ]
Goldgof, Dmitry B. [2 ]
Li, Ching-Yen [2 ]
Korn, Rene [3 ]
Bendtsen, Claus [4 ]
Velazquez, Emmanuel Rios [5 ]
Dekker, Andre [5 ]
Aerts, Hugo [5 ]
Lambin, Philippe [5 ]
Li, Xiuli [6 ]
Tian, Jie [6 ]
Gatenby, Robert A. [1 ]
Gillies, Robert J. [1 ]
机构
[1] H Lee Moffitt Canc Ctr & Res Inst, Dept Imaging, Tampa, FL 33612 USA
[2] Univ S Florida, Dept Comp Sci & Engn, Tampa, FL 33620 USA
[3] Definiens AG, D-80339 Munich, Germany
[4] AstraZeneca, Discovery Sci, Macclesfield SK10 4TG, Cheshire, England
[5] Univ Hosp Maastricht, Dept Radiat Oncol, Maastricht, Netherlands
[6] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Med Image Proc Grp, Beijing 100190, Peoples R China
基金
美国国家卫生研究院;
关键词
Image features; Delineation; Lung tumor; Lesion; CT; Region growing; Ensemble segmentation; ACTIVE CONTOUR; INTERACTIVE SEGMENTATION; VARIABILITY; CANCER;
D O I
10.1016/j.patcog.2012.10.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A single click ensemble segmentation (SCES) approach based on an existing "Click & Grow" algorithm is presented. The SCES approach requires only one operator selected seed point as compared with multiple operator inputs, which are typically needed. This facilitates processing large numbers of cases. Evaluation on a set of 129 CT lung tumor images using a similarity index (SI) was done. The average SI is above 93% using 20 different start seeds, showing stability. The average SI for 2 different readers was 79.53%. We then compared the SCES algorithm with the two readers, the level set algorithm and the skeleton graph cut algorithm obtaining an average SI of 78.29%, 77.72%, 63.77% and 63.76%, respectively. We can conclude that the newly developed automatic lung lesion segmentation algorithm is stable, accurate and automated. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:692 / 702
页数:11
相关论文
共 44 条
[31]  
Slabaugh G, 2005, IEEE IMAGE PROC, P1973
[32]   Non-rigid image registration of brain magnetic resonance images using graph-cuts [J].
So, Ronald W. K. ;
Tang, Tommy W. H. ;
Chung, Albert C. S. .
PATTERN RECOGNITION, 2011, 44 (10-11) :2450-2467
[33]  
Souza A, 2006, P SOC PHOTO-OPT INS, V6144, P1159
[34]   Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithms [J].
Suzuki, Kenji ;
Kohlbrenner, Ryan ;
Epstein, Mark L. ;
Obajuluwa, Ademola M. ;
Xu, Jianwu ;
Hori, Masatoshi .
MEDICAL PHYSICS, 2010, 37 (05) :2159-2166
[35]   Variability of target volume delineation in cervical esophageal cancer [J].
Tai, P ;
Van Dyk, J ;
Yu, E ;
Battista, J ;
Stitt, L ;
Coad, T .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 42 (02) :277-288
[36]  
Tao Y, 2009, LECT NOTES COMPUT SC, V5762, P715
[37]   A Novel Software Platform for Medical Image Processing and Analyzing [J].
Tian, Jie ;
Xue, Jian ;
Dai, Yakang ;
Chen, Jian ;
Zheng, Jian .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2008, 12 (06) :800-812
[38]   PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes [J].
Van Baardwijk, Angela ;
Bosmans, Geert ;
Boersma, Liesbeth ;
Buijsen, Jeroen ;
Wanders, Stofferinus ;
Hochstenbag, Monique ;
Van Suylen, Robert-Jan ;
Dekker, Andre ;
Dehing-Oberije, Cary ;
Houben, Ruud ;
Bentzen, Soren M. ;
Van Kroonenburgh, Marinus ;
Lambin, Philippe ;
De Ruysscher, Dirk .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 68 (03) :771-778
[39]   Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation [J].
Wang, Li ;
Li, Chunming ;
Sun, Quansen ;
Xia, Deshen ;
Kao, Chiu-Yen .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (07) :520-531
[40]   Stratified Learning of Local Anatomical Context for Lung Nodules in CT Images [J].
Wu, Dijia ;
Lu, Le ;
Bi, Jinbo ;
Shinagawa, Yoshihisa ;
Boyer, Kim ;
Krishnan, Arun ;
Salganicoff, Marcos .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :2791-2798