Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus

被引:230
作者
Williams, RRE
Azuara, V
Perry, P
Sauer, S
Dvorkina, M
Jorgensen, H
Roix, J
McQueen, P
Misteli, T
Merkenschlager, M
Fisher, AG
机构
[1] Hammersmith Hosp, Lymphocyte Dev Grp, MRC, Ctr Clin Sci,Imperial Coll London, London W12 0NN, England
[2] MIT, Canc Res Ctr, Cambridge, MA 02139 USA
[3] Ctr Informat Technol, Div Computat Biosci, Math & Stat Comp Lab, Bethesda, MD 20892 USA
[4] NCI, Lab Receptor Biol & Gene Express, NIH, Bethesda, MD 20892 USA
基金
英国医学研究理事会;
关键词
chromatin; transcription; replication timing; nuclear organization; neurogenesis; epigenetics; proneural;
D O I
10.1242/jcs.02727
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Determining how genes are epigenetically regulated to ensure their correct spatial and temporal expression during development is key to our understanding of cell lineage commitment. Here we examined epigenetic changes at an important proneural regulator gene Mash1 (Ascl1), as embryonic stem (ES) cells commit to the neural lineage. In ES cells where the Mash1 gene is transcriptionally repressed, the locus replicated late in S phase and was preferentially positioned at the nuclear periphery with other late-replicating genes (Neurod, Sprr2a). This peripheral location was coupled with low levels of histone H3K9 acetylation at the Mash1 promoter and enhanced H3K27 methylation but surprisingly location was not affected by removal of the Ezh2/Eed HMTase complex or several other chromatin-silencing candidates (G9a, SuV39h-1, Dnmt-1, Dnmt-3a and Dnmt-3b). Upon neural induction however, Mash1 transcription was upregulated (> 100-fold), switched its time of replication from late to early in S phase and relocated towards the interior of the nucleus. This spatial repositioning was selective for neural commitment because Mash1 was peripheral in ES-derived mesoderm and other non-neural cell types. A bidirectional analysis of replication timing across a 2 Mb region flanking the Mash1 locus showed that chromatin changes were focused at Mash1. These results suggest that Mash1 is regulated by changes in chromatin structure and location and implicate the nuclear periphery as an important environment for maintaining the undifferentiated state of ES cells.
引用
收藏
页码:132 / 140
页数:9
相关论文
共 60 条
[1]   Perinuclear localization of chromatin facilitates transcriptional silencing [J].
Andrulis, ED ;
Neiman, AM ;
Zappulla, DC ;
Sternglanz, R .
NATURE, 1998, 394 (6693) :592-595
[2]   Heritable gene silencing in lymphocytes delays chromatid resolution without affecting the timing of DNA replication [J].
Azuara, V ;
Brown, KE ;
Williams, RRE ;
Webb, N ;
Dillon, N ;
Festenstein, R ;
Buckle, V ;
Merkenschlager, M ;
Fisher, AG .
NATURE CELL BIOLOGY, 2003, 5 (07) :668-U49
[3]   Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytes [J].
Baxter, J ;
Sauer, S ;
Peters, A ;
John, R ;
Williams, R ;
Caparros, ML ;
Arney, K ;
Otte, A ;
Jenuwein, T ;
Merkenschlager, M ;
Fisher, AG .
EMBO JOURNAL, 2004, 23 (22) :4462-4472
[4]   Nuclear organisation and gene expression [J].
Baxter, J ;
Merkenschlager, M ;
Fisher, AG .
CURRENT OPINION IN CELL BIOLOGY, 2002, 14 (03) :372-376
[5]   Proneural genes and the specification of neural cell types [J].
Bertrand, N ;
Castro, DS ;
Guillemot, F .
NATURE REVIEWS NEUROSCIENCE, 2002, 3 (07) :517-530
[6]   Normal timing of oligodendrocyte development from genetically engineered, lineage-selectable mouse ES cells [J].
Billon, N ;
Jolicoeur, C ;
Ying, QL ;
Smith, A ;
Raff, M .
JOURNAL OF CELL SCIENCE, 2002, 115 (18) :3657-3665
[7]   Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division [J].
Brown, KE ;
Baxter, J ;
Graf, D ;
Merkenschlager, M ;
Fisher, AG .
MOLECULAR CELL, 1999, 3 (02) :207-217
[8]   Expression of α- and β-globin genes occurs within different nuclear domains in haemopoietic cells [J].
Brown, KE ;
Amoils, S ;
Horn, JM ;
Buckle, VJ ;
Higgs, DR ;
Merkenschlager, M ;
Fisher, AG .
NATURE CELL BIOLOGY, 2001, 3 (06) :602-606
[9]   Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin [J].
Brown, KE ;
Guest, SS ;
Smale, ST ;
Hahm, K ;
Merkenschlager, M ;
Fisher, AG .
CELL, 1997, 91 (06) :845-854
[10]   A 3-DIMENSIONAL VIEW OF PRECURSOR MESSENGER-RNA METABOLISM WITHIN THE MAMMALIAN NUCLEUS [J].
CARTER, KC ;
BOWMAN, D ;
CARRINGTON, W ;
FOGARTY, K ;
MCNEIL, JA ;
FAY, FS ;
LAWRENCE, JB .
SCIENCE, 1993, 259 (5099) :1330-1335