Interface engineering in chalcopyrite thin film solar devices

被引:34
作者
Fischer, CH [1 ]
Bär, M [1 ]
Glatzel, T [1 ]
Lauermann, I [1 ]
Lux-Steiner, MC [1 ]
机构
[1] Hahn Meitner Inst Berlin GmbH, D-14109 Berlin, Germany
关键词
interface; chalcopyrite solar cells; XES; PES; IPES; ERDA; KPFM;
D O I
10.1016/j.solmat.2005.10.012
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Successful interface engineering requires compositional and electronic material characterization as a prerequisite for understanding and intentionally generating interfaces in photovoltaic devices. The paper gives an overview with several examples, all referring to Cu(In,Ga)(S,Se)(2) ("CIGSSe")-based solar cells, with an emphasis on characterization using highly specialized methods, such as elastic recoil detection analysis, X-ray emission spectroscopy and photoelectron spectroscopy using synchrotron and ultraviolet light for excitation, inverse photoemission spectroscopy and Kelvin probe force microscopy. First, the determination of the depth profile of the band gap energy E-g in the absorber layer is demonstrated. The modification of E-g towards both interfaces is discussed in terms of beneficial electronic effects. Next, the interface between absorber and buffer layers with alternative and promising non-toxic materials is considered. Between CIGSSe and a ZnSe buffer deposited by the metalorganic chemical vapor deposition (MOCVD) method a buried ZnS interface was found. For a Zn(O,OH) buffer processed with an ion layer gas reaction (ILGAR) the correlation of surface composition, valence band maximum and efficiency of the resulting solar cell is shown. In addition, another approach is considered where a ZnMgO window layer is sputtered directly on the absorber omitting any buffer layer. The determination of the potential distribution at the ZnMgO/CIGSSe interface supports the understanding of this new and simpler way to get good cell performances even without any buffer. Finally, monolithically integrated solar modules without encapsulation were investigated before and after accelerated aging tests and changes at the interconnects were identified. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1471 / 1485
页数:15
相关论文
共 31 条
[1]   Zn(O,OH) layers in chalcopyrite thin-film solar cells:: Valence-band maximum versus composition -: art. no. 053702 [J].
Bär, M ;
Reichardt, J ;
Grimm, A ;
Kötschau, I ;
Lauermann, I ;
Rahne, K ;
Sokoll, S ;
Lux-Steiner, MC ;
Fischer, CH ;
Weinhardt, L ;
Umbach, E ;
Heske, C ;
Jung, C ;
Niesen, TP ;
Visbeck, S .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (05)
[2]   Cd2+/NH3-treatment of Cu(In,Ga)(S,Se)2:: Impact on the properties of ZnO layers deposited by the ion layer gas reaction method -: art. no. 014905 [J].
Bär, M ;
Bloeck, U ;
Muffler, HJ ;
Lux-Steiner, MC ;
Fischer, CH ;
Giersig, M ;
Niesen, TP ;
Karg, F .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (01)
[3]   Cd2+/NH3 treatment of Cu(In,Ga)(S,Se)2 thin-filin solar cell absorbers:: A model for the performance-enhancing processes in the partial electrolyte [J].
Bär, M ;
Weinhardt, L ;
Heske, C ;
Muffler, HJ ;
Lux-Steiner, MC ;
Umbach, E ;
Fischer, CH .
PROGRESS IN PHOTOVOLTAICS, 2005, 13 (07) :571-577
[4]   Determination of the band gap depth profile of the penternary Cu(In(1-X)GaX)(SYSe(1-Y))2 chalcopyrite from its composition gradient [J].
Bär, M ;
Bohne, W ;
Röhrich, J ;
Strub, E ;
Lindner, S ;
Lux-Steiner, MC ;
Fischer, CH ;
Niesen, TP ;
Karg, F .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (07) :3857-3860
[5]   High efficiency chalcopyrite solar cells with ILGAR-ZnO WEL-device characteristics subject to the WEL composition [J].
Bär, M ;
Fischer, CH ;
Muffler, HJ ;
Leupolt, B ;
Niesen, TP ;
Karg, F ;
Lux-Steiner, MC .
CONFERENCE RECORD OF THE TWENTY-NINTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE 2002, 2002, :636-639
[6]   Replacement of the CBD-CdS buffer and the sputtered i-ZnO layer by an ILGAR-ZnO WEL:: optimization of the WEL deposition [J].
Bär, M ;
Fischer, CH ;
Muffler, H ;
Zweigart, S ;
Karg, F ;
Lux-Steiner, MC .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 75 (1-2) :101-107
[7]   ILGAR-ZnO Window Extension Layer:: An adequate substitution of the conventional CBD-CdS buffer in Cu(In,Ga) (S,Se)2-based solar cells with superior device performance [J].
Bär, M ;
Muffler, HJ ;
Fischer, CH ;
Zweigart, S ;
Karg, F ;
Lux-Steiner, MC .
PROGRESS IN PHOTOVOLTAICS, 2002, 10 (03) :173-184
[8]   ILGAR technology IV:: ILGAR thin film technology extended to metal oxides [J].
Bär, M ;
Muffler, HJ ;
Fischer, CH ;
Lux-Steiner, MC .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 67 (1-4) :113-120
[9]   The Berlin time-of-flight ERDA setup [J].
Bohne, W ;
Rohrich, J ;
Roschert, G .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1998, 136 :633-637
[10]   Diode (characteristics in state-of-the-art ZnO/CdS/Cu(In1-xGax)Se2 solar cells [J].
Contreras, MA ;
Ramanathan, K ;
AbuShama, J ;
Hasoon, F ;
Young, DL ;
Egaas, B ;
Noufi, R .
PROGRESS IN PHOTOVOLTAICS, 2005, 13 (03) :209-216