Efficient concerted integration by recombinant human immunodeficiency virus type 1 integrase without cellular or viral cofactors

被引:64
作者
Sinha, S [1 ]
Pursley, MH [1 ]
Grandgenett, DP [1 ]
机构
[1] St Louis Univ, Hlth Sci Ctr, Inst Mol Virol, St Louis, MO 63110 USA
关键词
D O I
10.1128/JVI.76.7.3105-3113.2002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Replication of retroviruses requires integration of the linear viral DNA genome into the host chromosomes. Integration requires the viral integrase (IN), located in high-molecular-weight nucleoprotein complexes termed preintegration complexes (PIC). The PIC inserts the two viral DNA termini in a concerted manner into chromosomes in vivo as well as exogenous target DNA in vitro. We reconstituted nucleoprotein complexes capable of efficient concerted (full-site) integration using recombinant wild-type human immunodeficiency virus type I (HIV-1) IN with linear retrovirus-like donor DNA (480 bp). In addition, no cellular or viral protein cofactors are necessary for purified bacterial recombinant HIV-1 IN to mediate efficient full-site integration of two donor termini into supercoiled target DNA. At similar to30 nM IN (20 min at 37degreesC), approximately 15 and 8% of the input donor is incorporated into target DNA, producing half-site (insertion of one viral DNA end per target) and full-site integration products, respectively. Sequencing the donor-target junctions of full-site recombinants confirms that 5-bp host site duplications have occurred with a fidelity of similar to70%, similar to the fidelity when using IN derived from nonionic detergent lysates of HIV-1 virions. A key factor allowing recombinant wild-type HIV-1 IN to mediate full-site integration appears to be the avoidance of high IN concentrations in its purification (similar to125 mug/ml) and in the integration assay (<50 nM). The results show that recombinant HIV-1 IN may not be significantly defective for full-site integration. The findings further suggest that a high concentration or possibly aggregation of IN is detrimental to the assembly of correct nucleoprotein complexes for full-site integration.
引用
收藏
页码:3105 / 3113
页数:9
相关论文
共 43 条
[1]   Concerted integration of linear retroviral DNA by the avian sarcoma virus integrase in vitro: Dependence on both long terminal repeat termini [J].
Aiyar, A ;
Hindmarsh, P ;
Skalka, AM ;
Leis, J .
JOURNAL OF VIROLOGY, 1996, 70 (06) :3571-3580
[2]   Structure-based mutagenesis of the human immunodeficiency virus type 1 DNA attachment site: Effects on integration and cDNA synthesis [J].
Brown, HEV ;
Chen, HM ;
Engelman, A .
JOURNAL OF VIROLOGY, 1999, 73 (11) :9011-9020
[3]   CORRECT INTEGRATION OF RETROVIRAL DNA INVITRO [J].
BROWN, PO ;
BOWERMAN, B ;
VARMUS, HE ;
BISHOP, JM .
CELL, 1987, 49 (03) :347-356
[4]  
BROWN PO, 1998, RETROVIRUSES, P161
[5]   Solution structure of the N-terminal zinc binding domain of HIV-1 integrase [J].
Cai, ML ;
Zheng, RL ;
Caffrey, M ;
Craigie, R ;
Clore, GM ;
Gronenborn, AM .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (07) :567-577
[6]   Coupled integration of human immunodeficiency virus type 1 cDNA ends by purified integrase in vitro: Stimulation by the viral nucleocapsid protein [J].
Carteau, S ;
Gorelick, RJ ;
Bushman, FD .
JOURNAL OF VIROLOGY, 1999, 73 (08) :6670-6679
[7]   Multiple integrase functions are required to form the native structure of the human immunodeficiency virus type I intasome [J].
Chen, HM ;
Wei, SQ ;
Engelman, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (24) :17358-17364
[8]   Activity of recombinant HIV-1 integrase on mini-HIV DNA [J].
Cherepanov, P ;
Surratt, D ;
Toelen, J ;
Pluymers, W ;
Griffith, J ;
De Clercq, E ;
Debyser, Z .
NUCLEIC ACIDS RESEARCH, 1999, 27 (10) :2202-2210
[9]   HIV integrase, a brief overview from chemistry to therapeutics [J].
Craigie, R .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (26) :23213-23216
[10]   THE IN PROTEIN OF MOLONEY MURINE LEUKEMIA-VIRUS PROCESSES THE VIRAL-DNA ENDS AND ACCOMPLISHES THEIR INTEGRATION INVITRO [J].
CRAIGIE, R ;
FUJIWARA, T ;
BUSHMAN, F .
CELL, 1990, 62 (04) :829-837