Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting

被引:610
作者
Kim, Jae Young [1 ]
Magesh, Ganesan [1 ]
Youn, Duck Hyun [1 ]
Jang, Ji-Wook [1 ]
Kubota, Jun [2 ]
Domen, Kazunari [2 ]
Lee, Jae Sung [3 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, Pohang 790784, South Korea
[2] Univ Tokyo, Dept Chem Syst Engn, Bunkyo Ku, Tokyo 1138656, Japan
[3] Ulsan Natl Inst Sci & Technol, Sch Energy & Chem Engn, Ulsan 689798, South Korea
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
新加坡国家研究基金会;
关键词
OXYGEN-EVOLVING CATALYST; HYDROGEN-PRODUCTION; THIN-FILMS; ARTIFICIAL PHOTOSYNTHESIS; CHARGE-TRANSFER; OXIDE; OXIDATION; GRAPHENE; ELECTRODES; PHOSPHATE;
D O I
10.1038/srep02681
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A hematite photoanode showing a stable, record-breaking performance of 4.32 mA/cm(2) photoelectrochemical water oxidation current at 1.23 V vs. RHE under simulated 1-sun (100 mW/cm(2)) irradiation is reported. This photocurrent corresponds to ca. 34% of the maximum theoretical limit expected for hematite with a band gap of 2.1 V. The photoanode produced stoichiometric hydrogen and oxygen gases in amounts close to the expected values from the photocurrent. The hematitle has a unique single-crystalline "wormlike" morphology produced by in-situ two-step annealing at 550 degrees C and 800 degrees C of beta-FeOOH nanorods grown directly on a transparent conducting oxide glass via an all-solution method. In addition, it is modified by platinum doping to improve the charge transfer characteristics of hematite and an oxygen-evolving co-catalyst on the surface.
引用
收藏
页数:8
相关论文
共 55 条
[31]  
Liang YY, 2011, NAT MATER, V10, P780, DOI [10.1038/NMAT3087, 10.1038/nmat3087]
[32]   Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting [J].
Ling, Yichuan ;
Wang, Gongming ;
Wheeler, Damon A. ;
Zhang, Jin Z. ;
Li, Yat .
NANO LETTERS, 2011, 11 (05) :2119-2125
[33]   Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting [J].
Mao, Aiming ;
Park, Nam-Gyu ;
Han, Gui Young ;
Park, Jong Hyeok .
NANOTECHNOLOGY, 2011, 22 (17)
[34]   ELECTRICAL CONDUCTIVITY OF ALPHA-FE203 [J].
NAKAU, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1960, 15 (04) :727-727
[35]   Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting [J].
Ng, Yun Hau ;
Iwase, Akihide ;
Kudo, Akihiko ;
Amal, Rose .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (17) :2607-2612
[36]   To What Extent Do Graphene Scaffolds Improve the Photovoltaic and Photocatalytic Response of TiO2 Nanostructured Films? [J].
Ng, Yun Hau ;
Lightcap, Ian V. ;
Goodwin, Kevin ;
Matsumura, Michio ;
Kamat, Prashant V. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (15) :2222-2227
[37]   A COMPARISON OF INTENSITY-MODULATED PHOTOCURRENT SPECTROSCOPY AND PHOTOELECTROCHEMICAL IMPEDANCE SPECTROSCOPY IN A STUDY OF PHOTOELECTROCHEMICAL HYDROGEN EVOLUTION AT P-INP [J].
PONOMAREV, EA ;
PETER, LM .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1995, 397 (1-2) :45-52
[38]   Synthesis and photoelectrochemical properties of nanoporous iron (III) oxide by potentiostatic anodization [J].
Prakasam, Haripriya E. ;
Varghese, Oomman K. ;
Paulose, Maggie ;
Mor, Gopal K. ;
Grimes, Craig A. .
NANOTECHNOLOGY, 2006, 17 (17) :4285-4291
[39]   DESIGN AND EVALUATION OF NEW OXIDE PHOTOANODES FOR THE PHOTOELECTROLYSIS OF WATER WITH SOLAR-ENERGY [J].
RAUH, RD ;
BUZBY, JM ;
REISE, TF ;
ALKAITIS, SA .
JOURNAL OF PHYSICAL CHEMISTRY, 1979, 83 (17) :2221-2226
[40]   Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes [J].
Sartoretti, CJ ;
Alexander, BD ;
Solarska, R ;
Rutkowska, IA ;
Augustynski, J ;
Cerny, R .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (28) :13685-13692