Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams through an apertured astigmatic optical system

被引:86
作者
Cai, YJ
Hu, L
机构
[1] Zhejiang Univ, Joint Res Ctr Photon, Royal Inst Technol, Hangzhou 310058, Peoples R China
[2] Royal Inst Technol, Alfven Lab, Div Electromagnet Theory, SE-10044 Stockholm, Sweden
关键词
D O I
10.1364/OL.31.000685
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
By expanding the hard-aperture function into a finite sum of complex Gaussian functions, we derived an approximate analytical formula for a partially coherent twisted anisotropic Gaussian Schell-model (AGSM) beam propagating through an apertured paraxial general astigmatic (GA) optical system by use of a tenser method. The results obtained by using the approximate analytical formula are in good agreement with those obtained by using the numerical integral calculation. Our formulas avoid time-consuming numerical integration and provide a convenient and effective way for studying the propagation and transformation of a partially coherent twisted AGSM beam through an apertured paraxial GA optical system. (c) 2006 Optical Society of America.
引用
收藏
页码:685 / 687
页数:3
相关论文
共 13 条
[1]   TWISTED GAUSSIAN SCHELL-MODEL BEAMS - A SUPERPOSITION MODEL [J].
AMBROSINI, D ;
BAGINI, V ;
GORI, F ;
SANTARSIERO, M .
JOURNAL OF MODERN OPTICS, 1994, 41 (07) :1391-1399
[2]   Propagation of partially coherent twisted anisotropic Gaussian-Schell model beams through misaligned optical systems [J].
Cai, YJ ;
Lin, Q .
OPTICS COMMUNICATIONS, 2002, 211 (1-6) :1-8
[4]   Approximate description for Bessel, Bessel-Gauss, and Gaussian beams with finite aperture [J].
Ding, DS ;
Liu, XJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (06) :1286-1293
[5]   INTERPRETATION AND EXPERIMENTAL DEMONSTRATION OF TWISTED GAUSSIAN SCHELL-MODEL BEAMS [J].
FRIBERG, AT ;
TERVONEN, E ;
TURUNEN, J .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06) :1818-1826
[6]   Tensor ABCD law for partially coherent twisted anisotropic Gaussian-Schell model beams [J].
Lin, Q ;
Cai, YJ .
OPTICS LETTERS, 2002, 27 (04) :216-218
[7]  
Mandel L., 1995, EBL SCHWEITZER
[8]   TWISTED GAUSSIAN SCHELL-MODEL BEAMS .1. SYMMETRY STRUCTURE AND NORMAL-MODE SPECTRUM [J].
SIMON, R ;
SUNDAR, K ;
MUKUNDA, N .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (09) :2008-2016
[9]   ANISOTROPIC GAUSSIAN SCHELL-MODEL BEAMS - PASSAGE THROUGH OPTICAL-SYSTEMS AND ASSOCIATED INVARIANTS [J].
SIMON, R ;
SUDARSHAN, ECG ;
MUKUNDA, N .
PHYSICAL REVIEW A, 1985, 31 (04) :2419-2434
[10]   TWISTED GAUSSIAN SCHELL-MODEL BEAMS [J].
SIMON, R ;
MUKUNDA, N .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1993, 10 (01) :95-109