High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates

被引:92
作者
Blaettler, Thomas M.
Pasche, Stephanie
Textor, Marcus
Griesser, Hans J. [1 ]
机构
[1] ETH, Dept Mat, BioInterfaceGrp, Lab Surface Sci & Technol, CH-8093 Zurich, Switzerland
[2] Univ S Australia, Ian Wark Res Inst, Mawson Lakes, SA 5095, Australia
关键词
D O I
10.1021/la0602766
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrostatic adsorption onto charged surfaces of comb copolymers comprising a polyelectrolyte backbone and pendent PEG side chains, such as poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG), has in previous studies provided protein-repellent thin coatings, particularly on metal oxide surfaces. A drawback of this approach is, however, the instability of such adsorbed layers under extreme pH values or high ionic strength. We have overcome this limitation in the present study by covalently immobilizing PLL-g-PEG copolymers onto aldehyde plasma-modified substrates. Silicon wafers, optical waveguide chips, and perfluorinated ethylene-co-propylene (FEP) polymer substrates were first coated with a thin plasma polymer layer using a propionaldehyde plasma, followed by covalent immobilization of PLL-g-PEG via reductive amination between amine groups of the PLL backbone with aldehyde groups on the plasma-deposited interlayer. The stability in high salt media and the protein resistance of different molecular architectures of immobilized PLL-g-PEG layers were quantitatively investigated by XPS, an optical waveguide technique (OWLS), and ToF-SIMS. The adsorption of bovine serum albumin was found to be below the detection limit (< 2 ng/cm(2)), as for electrostatically adsorbed PLL-g-PEG layers. However, after 24 h of exposure of covalently immobilized layers of PLL-g-PEG to high ionic strength buffer (2400 mM NaCl), no significant change in the protein resistance was observed, whereas under the same conditions electrostatically adsorbed PLL-g-PEG coatings lost their protein resistance. Moreover, covalent immobilization via an aldehyde plasma interlayer enabled the application of PLL-g-PEG layers onto substrates such as FEP onto which electrostatic binding is not possible. These findings create a generic platform for the covalent immobilization of PLL-g-PEG onto a wide variety of substrates.
引用
收藏
页码:5760 / 5769
页数:10
相关论文
共 36 条
[1]   Gas discharge plasmas and their applications [J].
Bogaerts, A ;
Neyts, E ;
Gijbels, R ;
van der Mullen, J .
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY, 2002, 57 (04) :609-658
[2]  
BOROS J, 2001, TITANIUM MED MAT SCI, P87
[3]  
Dai LM, 2000, SURF INTERFACE ANAL, V29, P46, DOI 10.1002/(SICI)1096-9918(200001)29:1<46::AID-SIA692>3.0.CO
[4]  
2-6
[5]   Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies [J].
Faucheux, N ;
Schweiss, R ;
Lützow, K ;
Werner, C ;
Groth, T .
BIOMATERIALS, 2004, 25 (14) :2721-2730
[6]  
Gong X, 2000, J POLYM SCI POL PHYS, V38, P2323, DOI 10.1002/1099-0488(20000901)38:17<2323::AID-POLB120>3.0.CO
[7]  
2-6
[8]   GROWTH OF HUMAN-CELLS ON PLASMA POLYMERS - PUTATIVE ROLE OF AMINE AND AMIDE GROUPS [J].
GRIESSER, HJ ;
CHATELIER, RC ;
GENGENBACH, TR ;
JOHNSON, G ;
STEELE, JG .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 1994, 5 (06) :531-554
[9]   SMALL-SCALE REACTOR FOR PLASMA PROCESSING OF MOVING SUBSTRATE WEB [J].
GRIESSER, HJ .
VACUUM, 1989, 39 (05) :485-488
[10]  
GRIESSER HJ, UNPUB