General Framework for Meta-analysis of Rare Variants in Sequencing Association Studies

被引:161
作者
Lee, Seunggeun [1 ]
Teslovich, Tanya M. [2 ,3 ]
Boehnke, Michael [2 ,3 ]
Lin, Xihong [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; COMPLEX TRAITS; LOCI; DISEASES; ROBUST; TESTS; MAP;
D O I
10.1016/j.ajhg.2013.05.010
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We propose a general statistical framework for meta-analysis of gene- or region-based multimarker rare variant association tests in sequencing association studies. In genome-wide association studies, single-marker meta-analysis has been widely used to increase statistical power by combining results via regression coefficients and standard errors from different studies. In analysis of rare variants in sequencing studies, region-based multimarker tests are often used to increase power. We propose meta-analysis methods for commonly used gene- or region-based rare variants tests, such as burden tests and variance component tests. Because estimation of regression coefficients of individual rare variants is often unstable or not feasible, the proposed method avoids this difficulty by calculating score statistics instead that only require fitting the null model for each study and then aggregating these score statistics across studies. Our proposed meta-analysis rare variant association tests are conducted based on study-specific summary statistics, specifically score statistics for each variant and between-variant covariance-type (linkage disequilibrium) relationship statistics for each gene or region. The proposed methods are able to incorporate different levels of heterogeneity of genetic effects across studies and are applicable to meta-analysis of multiple ancestry groups. We show that the proposed methods are essentially as powerful as joint analysis by directly pooling individual level genotype data. We conduct extensive simulations to evaluate the performance of our methods by varying levels of heterogeneity across studies, and we apply the proposed methods to meta-analysis of rare variant effects in a multicohort study of the genetics of blood lipid levels.
引用
收藏
页码:42 / 53
页数:12
相关论文
共 37 条
[1]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[2]   A map of human genome variation from population-scale sequencing [J].
Altshuler, David ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Collins, Francis S. ;
De la Vega, Francisco M. ;
Donnelly, Peter ;
Egholm, Michael ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Knoppers, Bartha M. ;
Lander, Eric S. ;
Lehrach, Hans ;
Mardis, Elaine R. ;
McVean, Gil A. ;
Nickerson, DebbieA. ;
Peltonen, Leena ;
Schafer, Alan J. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Deiros, David ;
Metzker, Mike ;
Muzny, Donna ;
Reid, Jeff ;
Wheeler, David ;
Wang, Jun ;
Li, Jingxiang ;
Jian, Min ;
Li, Guoqing ;
Li, Ruiqiang ;
Liang, Huiqing ;
Tian, Geng ;
Wang, Bo ;
Wang, Jian ;
Wang, Wei ;
Yang, Huanming ;
Zhang, Xiuqing ;
Zheng, Huisong ;
Lander, Eric S. ;
Altshuler, David L. ;
Ambrogio, Lauren ;
Bloom, Toby ;
Cibulskis, Kristian ;
Fennell, Tim J. ;
Gabriel, Stacey B. .
NATURE, 2010, 467 (7319) :1061-1073
[3]  
[Anonymous], 1970, STAT METHODS RES WOR
[4]   Next-generation DNA sequencing techniques [J].
Ansorge, Wilhelm J. .
NEW BIOTECHNOLOGY, 2009, 25 (04) :195-203
[5]   Comprehensive literature review and statistical considerations for GWAS meta-analysis [J].
Begum, Ferdouse ;
Ghosh, Debashis ;
Tseng, George C. ;
Feingold, Eleanor .
NUCLEIC ACIDS RESEARCH, 2012, 40 (09) :3777-3784
[6]  
Davies R. B., 1980, J ROYAL STAT SOC C, V29, P323, DOI DOI 10.2307/2346911
[7]   Robust and Powerful Tests for Rare Variants Using Fisher's Method to Combine Evidence of Association From Two or More Complementary Tests [J].
Derkach, Andriy ;
Lawless, Jerry F. ;
Sun, Lei .
GENETIC EPIDEMIOLOGY, 2013, 37 (01) :110-121
[8]   Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods [J].
Duchesne, Pierre ;
De Micheaux, Pierre Lafaye .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (04) :858-862
[9]   A second generation human haplotype map of over 3.1 million SNPs [J].
Frazer, Kelly A. ;
Ballinger, Dennis G. ;
Cox, David R. ;
Hinds, David A. ;
Stuve, Laura L. ;
Gibbs, Richard A. ;
Belmont, John W. ;
Boudreau, Andrew ;
Hardenbol, Paul ;
Leal, Suzanne M. ;
Pasternak, Shiran ;
Wheeler, David A. ;
Willis, Thomas D. ;
Yu, Fuli ;
Yang, Huanming ;
Zeng, Changqing ;
Gao, Yang ;
Hu, Haoran ;
Hu, Weitao ;
Li, Chaohua ;
Lin, Wei ;
Liu, Siqi ;
Pan, Hao ;
Tang, Xiaoli ;
Wang, Jian ;
Wang, Wei ;
Yu, Jun ;
Zhang, Bo ;
Zhang, Qingrun ;
Zhao, Hongbin ;
Zhao, Hui ;
Zhou, Jun ;
Gabriel, Stacey B. ;
Barry, Rachel ;
Blumenstiel, Brendan ;
Camargo, Amy ;
Defelice, Matthew ;
Faggart, Maura ;
Goyette, Mary ;
Gupta, Supriya ;
Moore, Jamie ;
Nguyen, Huy ;
Onofrio, Robert C. ;
Parkin, Melissa ;
Roy, Jessica ;
Stahl, Erich ;
Winchester, Ellen ;
Ziaugra, Liuda ;
Altshuler, David ;
Shen, Yan .
NATURE, 2007, 449 (7164) :851-U3
[10]   Random-Effects Model Aimed at Discovering Associations in Meta-Analysis of Genome-wide Association Studies [J].
Han, Buhm ;
Eskin, Eleazar .
AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 88 (05) :586-598