Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana

被引:107
作者
Schönrock, N
Exner, V
Probst, A
Gruissem, W
Hennig, L [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Plant Sci, CH-8092 Zurich, Switzerland
[2] Zurich Basel Plant Sci Ctr, CH-8092 Zurich, Switzerland
[3] Univ Geneva, Dept Plant Biol, CH-1211 Geneva 4, Switzerland
关键词
D O I
10.1074/jbc.M513426200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Duplication of chromatin following DNA replication requires spatial reorganization of chromatin domains assisted by chromatin assembly factor CAF-1. Here, we tested the genomic consequences of CAF-1 loss and the function of chromatin assembly factor CAF-1 in heterochromatin formation. Genes located in heterochromatic regions are usually silent, and we found that this transcriptional repression persists in the absence of CAF-1 in Arabidopsis. However, using microarrays we observed that genes that are active during late S-phase, when heterochromatin is duplicated, were up-regulated in CAF-1 mutants. Arabidopsis CAF-1 mutants also have reduced cytological heterochromatin content; however, DNA methylation of pericentromeric repeats was normal, demonstrating that CAF-1 is not required for maintenance of DNA methylation. Instead, hypomethylation of the genome, which has only mild effects on the development of wild-type plants, completely arrested development of CAF-1 mutants. These results suggest that CAF-1 functions in heterochromatin formation. CAF-1 and DNA methylation, which is also needed for heterochromatin formation, have partially redundant functions that are essential for cell proliferation. Interestingly, transcriptional repression and heterochromatin compaction can be genetically separated, and CAF-1 is required only for the complete compaction of heterochromatin but not to maintain transcriptional repression of heterochromatic genes.
引用
收藏
页码:9560 / 9568
页数:9
相关论文
共 62 条
[1]   The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly [J].
Ahmad, K ;
Henikoff, S .
MOLECULAR CELL, 2002, 9 (06) :1191-1200
[2]  
ALTMANN T, 2004, GENOMXPRESS, V3, P13
[3]   Mammalian G1- and S-phase checkpoints in response to DNA damage [J].
Bartek, J ;
Lukas, J .
CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (06) :738-747
[4]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[5]   Minimum information about a microarray experiment (MIAME) - toward standards for microarray data [J].
Brazma, A ;
Hingamp, P ;
Quackenbush, J ;
Sherlock, G ;
Spellman, P ;
Stoeckert, C ;
Aach, J ;
Ansorge, W ;
Ball, CA ;
Causton, HC ;
Gaasterland, T ;
Glenisson, P ;
Holstege, FCP ;
Kim, IF ;
Markowitz, V ;
Matese, JC ;
Parkinson, H ;
Robinson, A ;
Sarkans, U ;
Schulze-Kremer, S ;
Stewart, J ;
Taylor, R ;
Vilo, J ;
Vingron, M .
NATURE GENETICS, 2001, 29 (04) :365-371
[6]   Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments [J].
Breitling, R ;
Armengaud, P ;
Amtmann, A ;
Herzyk, P .
FEBS LETTERS, 2004, 573 (1-3) :83-92
[7]   Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III [J].
Caspari, T ;
Murray, JM ;
Carr, AM .
GENES & DEVELOPMENT, 2002, 16 (10) :1195-1208
[8]   Transcript profiling in Arabidopsis reveals complex responses to global inhibition of DNA methylation and histone deacetylation [J].
Chang, S ;
Pikaard, CS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (01) :796-804
[9]   Spatio-temporal analysis of mitotic activity with a labile cyclin-GUS fusion protein [J].
Colón-Carmona, A ;
You, R ;
Haimovitch-Gal, T ;
Doerner, P .
PLANT JOURNAL, 1999, 20 (04) :503-508
[10]   Cell cycling and cell enlargement in developing leaves of Arabidopsis [J].
Donnelly, PM ;
Bonetta, D ;
Tsukaya, H ;
Dengler, RE ;
Dengler, NG .
DEVELOPMENTAL BIOLOGY, 1999, 215 (02) :407-419