Development of liquid-environment frequency modulation atomic force microscope with low noise deflection sensor for cantilevers of various dimensions

被引:155
作者
Fukuma, T [1 ]
Jarvis, SP [1 ]
机构
[1] Univ Dublin Trinity Coll, Ctr Res Adapt Nanostruct & Nanodevices, Dublin 2, Ireland
基金
爱尔兰科学基金会;
关键词
D O I
10.1063/1.2188867
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We have developed a liquid-environment frequency modulation atomic force microscope (FM-AFM) with a low noise deflection sensor for a wide range of cantilevers with different dimensions. A simple yet accurate equation describing the theoretical limit of the optical beam deflection method in air and liquid is presented. Based on the equation, we have designed a low noise deflection sensor. Replaceable microscope objective lenses are utilized for providing a high magnification optical view (resolution: < 3 mu m) as well as for focusing a laser beam (laser spot size: similar to 10 mu m). Even for a broad range of cantilevers with lengths from 35 to 125 mu m, the sensor provides deflection noise densities of less than 11 fm/root Hz in air and 16 fm/root Hz in water. In particular, a cantilever with a length of 50 mu m gives the minimum deflection noise density of 5.7 fm/root Hz in air and 7.3 fm/root Hz in water. True atomic resolution of the developed FM-AFM is demonstrated by imaging mica in water. (c) 2006 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 22 条
[11]   ATOMIC-RESOLUTION OF THE SILICON (111)-(7X7) SURFACE BY ATOMIC-FORCE MICROSCOPY [J].
GIESSIBL, FJ .
SCIENCE, 1995, 267 (5194) :68-71
[12]   A Fabry-Perot interferometer for micrometer-sized cantilevers -: art. no. 074101 [J].
Hoogenboom, BW ;
Frederix, PLTM ;
Yang, JL ;
Martin, S ;
Pellmont, Y ;
Steinacher, M ;
Zäch, S ;
Langenbach, E ;
Heimbeck, HJ .
APPLIED PHYSICS LETTERS, 2005, 86 (07) :1-3
[13]   Megahertz silicon atomic force microscopy (AFM) cantilever and high-speed readout in AFM-based recording [J].
Hosaka, S ;
Etoh, K ;
Kikukawa, A ;
Koyanagi, H .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2000, 18 (01) :94-99
[14]   Frequency modulation detection atomic force microscopy in the liquid environment [J].
Jarvis, S. P. ;
Ishida, T. ;
Uchihashi, T. ;
Nakayama, Y. ;
Tokumoto, H. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (Suppl 1) :S129-S132
[15]   Local solvation shell measurement in water using a carbon nanotube probe [J].
Jarvis, SP ;
Uchihashi, T ;
Ishida, T ;
Tokumoto, H ;
Nakayama, Y .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (26) :6091-6094
[16]   Towards atomic force microscopy up to 100 MHz [J].
Kawakatsu, H ;
Kawai, S ;
Saya, D ;
Nagashio, M ;
Kobayashi, D ;
Toshiyoshi, H ;
Fujita, H .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2002, 73 (06) :2317-2320
[17]  
KITAMURA S, 1995, JPN J APPL PHYS PT 2, V34, pL1086
[18]   ATOMIC FORCE MICROSCOPE FORCE MAPPING AND PROFILING ON A SUB 100-A SCALE [J].
MARTIN, Y ;
WILLIAMS, CC ;
WICKRAMASINGHE, HK .
JOURNAL OF APPLIED PHYSICS, 1987, 61 (10) :4723-4729
[19]  
Morita S., 2002, Noncontact Atomic Force Microscopy
[20]   Rapid imaging of calcite crystal growth using atomic force microscopy with small cantilevers [J].
Paloczi, GT ;
Smith, BL ;
Hansma, PK ;
Walters, DA ;
Wendman, MA .
APPLIED PHYSICS LETTERS, 1998, 73 (12) :1658-1660