We review the results of the synthesis of IrO2 nanocrystals (NCs) on different substrates via metal-organic chemical vapour deposition (MOCVD) using (MeCp)(COD) Ir as the source reagent. The surface morphology, structural and spectroscopic properties of the as-deposited NCs were characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAD), x-ray diffractometry (XRD), x-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The roles of different substrates for the formation of various textures of nanocrystalline IrO2 are studied. Several one-dimensional (1D) nanostructures have evolved by decreasing the degree of interface instability. The morphological evolution occurs from triangular/wedged nanorods via incomplete/scrolled nanotubes to square nanotubes and square nanorods (NRs), with increasing morphological stability. The results show that the three-dimensional (3D) grains composing traditional film belong to the most stable form as compared to all the 1D NCs, and the sequential shape evolution has been found to be highly correlated to a morphological phase diagram based on the growth kinetics. In addition, area selective growth of IrO2 NRs has been demonstrated on sapphire( 012) and sapphire( 100) substrates which consist of patterned SiO2 as the nongrowth surface. The initial growth of IrO2 nuclei is studied. Selectivity, rod orientation, and other morphological features of the nanorod forest can find their origins in the nucleation behaviour during initial growth. XPS analyses show the coexistence of higher oxidation states of iridium in the as-grown IrO2 NCs. The usefulness of the experimental Raman scattering together with the modified spatial correlation ( MSC) model analysis as a residual stress and structural characterization technique for 1D IrO2 NCs has been demonstrated. The field emission properties of the vertically aligned IrO2 NRs are studied and demonstrated as a high-performance and robust field emitter material owing to its low work function, low resistivity and excellent stability against oxygen.