Poly(p-phenylenediamine)/graphene nanocomposites for supercapacitor applications

被引:119
作者
Jaidev [1 ]
Ramaprabhu, S. [1 ]
机构
[1] IITM, AENL, NFMTC, Dept Phys, Madras 600036, Tamil Nadu, India
关键词
ELECTROCHEMICAL CAPACITORS; CARBON NANOTUBE; ENERGY-STORAGE; COMPOSITES; PERFORMANCE; ELECTRODES; POLYANILINE; NANOFIBER; DEVICES; ULTRACAPACITORS;
D O I
10.1039/c2jm33627h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Herein, we report new nanocomposite materials based on poly(p-phenylenediamine) (PpPD) and hydrogen exfoliated graphene (HEG) sheets as efficient binder-free electrode materials for supercapacitors. The nanocomposites are synthesized via chemical oxidative polymerization of a para-phenyldiamine monomer in the presence of graphene sheets in acidic medium. The initial weight ratio of monomer to graphene is varied to get nanocomposites of different polymer to graphene weight ratios. The electrochemical performances of these nanocomposites as a supercapacitor electrode are investigated by cyclic voltammetry (CV), chronopotentiometry (CP) and electrochemical impedance spectroscopy (EIS) techniques in two electrode configuration. The nanocomposite with polymer to graphene weight ratio 1 : 2 shows a maximum specific capacitance of 248 F g(-1) at a specific current density of 2 A g(-1) and also demonstrates high rate capability. The maximum energy density of the fabricated symmetrical supercapacitor cells based on the mass of active electrodes is calculated to be 8.6 W h kg(-1) and 5.8 W h kg(-1) at a power density of 0.5 kW kg(-1) and 5 kW kg(-1), respectively. The nanocomposites retain 72% of their initial capacitance after 1000 cycles of charge-discharge at a high specific current density of 10 A g(-1).
引用
收藏
页码:18775 / 18783
页数:9
相关论文
共 67 条
[11]   Top down method for synthesis of highly conducting graphene by exfoliation of graphite oxide using focused solar radiation [J].
Eswaraiah, Varrla ;
Aravind, Sasidharannair Sasikaladevi Jyothirmayee ;
Ramaprabhu, Sundara .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (19) :6800-6803
[12]   Supercapacitors based on conducting polymers/nanotubes composites [J].
Frackowiak, E ;
Khomenko, V ;
Jurewicz, K ;
Lota, K ;
Béguin, F .
JOURNAL OF POWER SOURCES, 2006, 153 (02) :413-418
[13]   Control Strategy for Battery-Ultracapacitor Hybrid Energy Storage System [J].
Garcia, F. S. ;
Ferreira, A. A. ;
Pomilio, J. A. .
APEC: 2009 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION, VOLS 1- 4, 2009, :826-+
[14]  
Gassmann F., 2003, Europhysics News, V34, P176, DOI 10.1051/epn:2003502
[15]   Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors [J].
Gomez, Humberto ;
Ram, Manoj K. ;
Alvi, Farah ;
Villalba, P. ;
Stefanakos, Elias ;
Kumar, Ashok .
JOURNAL OF POWER SOURCES, 2011, 196 (08) :4102-4108
[16]  
Gordana C. M., 2011, J POLYM SCI A, V49, P3387
[17]   Polyaniline nanofibers obtained by interfacial polymerization for high-rate supercapacitors [J].
Guan, Hui ;
Fan, Li-Zhen ;
Zhang, Hongchang ;
Qu, Xuanhui .
ELECTROCHIMICA ACTA, 2010, 56 (02) :964-968
[18]   Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors [J].
Gupta, Vinay ;
Miura, Norio .
ELECTROCHIMICA ACTA, 2006, 52 (04) :1721-1726
[19]   Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles [J].
Hirata, M ;
Gotou, T ;
Horiuchi, S ;
Fujiwara, M ;
Ohba, M .
CARBON, 2004, 42 (14) :2929-2937
[20]  
Ichinohe D, 1998, J POLYM SCI POL CHEM, V36, P2593, DOI 10.1002/(SICI)1099-0518(199810)36:14<2593::AID-POLA19>3.3.CO