Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems

被引:920
作者
Wang, Zhong Lin [1 ,2 ]
Wu, Wenzhuo [1 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing, Peoples R China
关键词
energy conversion; nanogenerators; nanotechnology; photovoltaics; self-powered nanosystems; SENSITIZED SOLAR-CELLS; MULTIPLE EXCITON GENERATION; THERMOELECTRIC PROPERTIES; BIOFUEL CELL; QUANTUM DOTS; FUEL-CELLS; LOW-COST; PIEZOELECTRIC NANOWIRE; ARRAY PHOTOELECTRODES; FUNDAMENTAL THEORY;
D O I
10.1002/anie.201201656
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Health, infrastructure, and environmental monitoring as well as networking and defense technologies are only some of the potential areas of application of micro-/nanosystems (MNSs). It is highly desirable that these MNSs operate without an external electricity source and instead draw the energy they require from the environment in which they are used. This Review covers various approaches for energy harvesting to meet the future demand for self-powered MNSs. A bumper harvest, albeit on a small scale, is required for micro-/nanosystems (MNSs) to function reliably without an external power source. MNSs that can harvest energy from the environment in which they are used have wide-ranging potential applications in health, environmental, and infrastructure monitoring, as well as networking and defense technologies. This Review explores possibilities for energy harvesting to meet the future demand for MNSs. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:11700 / 11721
页数:22
相关论文
共 249 条
[1]   Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism [J].
Adachi, M ;
Murata, Y ;
Takao, J ;
Jiu, JT ;
Sakamoto, M ;
Wang, FM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (45) :14943-14949
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[3]  
[Anonymous], 2007, SCIENCE, V315, P721
[4]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[5]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[6]   Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J].
Bach, U ;
Lupo, D ;
Comte, P ;
Moser, JE ;
Weissörtel, F ;
Salbeck, J ;
Spreitzer, H ;
Grätzel, M .
NATURE, 1998, 395 (6702) :583-585
[7]   Logic circuits with carbon nanotube transistors [J].
Bachtold, A ;
Hadley, P ;
Nakanishi, T ;
Dekker, C .
SCIENCE, 2001, 294 (5545) :1317-1320
[8]   Single-Fiber-Based Hybridization of Energy Converters and Storage Units Using Graphene as Electrodes [J].
Bae, Joonho ;
Park, Young Jun ;
Lee, Minbaek ;
Cha, Seung Nam ;
Choi, Young Jin ;
Lee, Churl Seung ;
Kim, Jong Min ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2011, 23 (30) :3446-+
[9]   ARTIFICIAL PHOTOSYNTHESIS - SOLAR SPLITTING OF WATER TO HYDROGEN AND OXYGEN [J].
BARD, AJ ;
FOX, MA .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (03) :141-145
[10]   Enzymatic biofuel cells for Implantable and microscale devices [J].
Barton, SC ;
Gallaway, J ;
Atanassov, P .
CHEMICAL REVIEWS, 2004, 104 (10) :4867-4886