Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

被引:407
作者
Lee, Sung Kuk [1 ,2 ]
Chou, Howard [1 ,2 ,3 ]
Ham, Timothy S. [1 ,4 ]
Lee, Taek Soon [1 ,2 ]
Keasling, Jay D. [1 ,2 ,3 ,5 ]
机构
[1] Joint BioEnergy Inst, Emeryville, CA 95608 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[4] Sandia Natl Labs, Dept Computat Biosci, Albuquerque, NM 87185 USA
[5] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.copbio.2008.10.014
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L. For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.
引用
收藏
页码:556 / 563
页数:8
相关论文
共 64 条
[1]   Global organization of metabolic fluxes in the bacterium Escherichia coli [J].
Almaas, E ;
Kovács, B ;
Vicsek, T ;
Oltvai, ZN ;
Barabási, AL .
NATURE, 2004, 427 (6977) :839-843
[2]   Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF) [J].
Almeida, Joao R. M. ;
Modig, Tobias ;
Roder, Anja ;
Liden, Gunnar ;
Gorwa-Grauslund, Marie-F .
BIOTECHNOLOGY FOR BIOFUELS, 2008, 1 (1)
[3]   Environmental signal integration by a modular AND gate [J].
Anderson, J. Christopher ;
Voigt, Christopher A. ;
Arkin, Adam P. .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3
[4]   Environmentally controlled invasion of cancer cells by engineered bacteria [J].
Anderson, JC ;
Clarke, EJ ;
Arkin, AP ;
Voigt, CA .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 355 (04) :619-627
[5]   Synthetic biology: new engineering rules for an emerging discipline [J].
Andrianantoandro, Ernesto ;
Basu, Subhayu ;
Karig, David K. ;
Weiss, Ron .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0028
[6]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[7]   Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels [J].
Atsumi, Shota ;
Hanai, Taizo ;
Liao, James C. .
NATURE, 2008, 451 (7174) :86-U13
[8]   Robustness analysis and tuning of synthetic gene networks [J].
Batt, Gregory ;
Yordanov, Boyan ;
Weiss, Ron ;
Belta, Calin .
BIOINFORMATICS, 2007, 23 (18) :2415-2422
[9]   Addressing the need for alternative transportation fuels: The joint BioEnergy institute [J].
Blanch, Harvey W. ;
Adams, Paul D. ;
Andrews-Cramer, Katherine M. ;
Frommer, Wolf B. ;
Simmons, Blake A. ;
Keasling, Jay D. .
ACS CHEMICAL BIOLOGY, 2008, 3 (01) :17-20
[10]   Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium [J].
Brenner, Katie ;
Karig, David K. ;
Weiss, Ron ;
Arnold, Frances H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (44) :17300-17304