Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

被引:407
作者
Lee, Sung Kuk [1 ,2 ]
Chou, Howard [1 ,2 ,3 ]
Ham, Timothy S. [1 ,4 ]
Lee, Taek Soon [1 ,2 ]
Keasling, Jay D. [1 ,2 ,3 ,5 ]
机构
[1] Joint BioEnergy Inst, Emeryville, CA 95608 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Phys Biosci Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[4] Sandia Natl Labs, Dept Computat Biosci, Albuquerque, NM 87185 USA
[5] Univ Calif Berkeley, Dept Chem Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.copbio.2008.10.014
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L. For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.
引用
收藏
页码:556 / 563
页数:8
相关论文
共 64 条
[41]   Engineering a mevalonate pathway in Escherichia coli for production of terpenoids [J].
Martin, VJJ ;
Pitera, DJ ;
Withers, ST ;
Newman, JD ;
Keasling, JD .
NATURE BIOTECHNOLOGY, 2003, 21 (07) :796-802
[42]   Importance of systems biology in engineering microbes for biofuel production [J].
Mukhopadhyay, Aindrila ;
Redding, Alyssa M. ;
Rutherford, Becky J. ;
Keasling, Jay D. .
CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (03) :228-234
[43]   Metabolic flux analysis of recombinant protein overproduction in Escherichia coli [J].
Özkan, P ;
Sariyar, B ;
Ütkür, FÖ ;
Akman, U ;
Hortaçsu, A .
BIOCHEMICAL ENGINEERING JOURNAL, 2005, 22 (02) :167-195
[44]   Use of genome-scale microbial models for metabolic engineering [J].
Patil, KR ;
Åkesson, M ;
Nielsen, J .
CURRENT OPINION IN BIOTECHNOLOGY, 2004, 15 (01) :64-69
[45]   Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes [J].
Pfleger, Brian F. ;
Pitera, Douglas J. ;
D Smolke, Christina ;
Keasling, Jay D. .
NATURE BIOTECHNOLOGY, 2006, 24 (08) :1027-1032
[46]   Genome-scale models of microbial cells: Evaluating the consequences of constraints [J].
Price, ND ;
Reed, JL ;
Palsson, BO .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (11) :886-897
[47]   An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR) -: art. no. R54 [J].
Reed, JL ;
Vo, TD ;
Schilling, CH ;
Palsson, BO .
GENOME BIOLOGY, 2003, 4 (09)
[48]   Production of the antimalarial drug precursor artemisinic acid in engineered yeast [J].
Ro, DK ;
Paradise, EM ;
Ouellet, M ;
Fisher, KJ ;
Newman, KL ;
Ndungu, JM ;
Ho, KA ;
Eachus, RA ;
Ham, TS ;
Kirby, J ;
Chang, MCY ;
Withers, ST ;
Shiba, Y ;
Sarpong, R ;
Keasling, JD .
NATURE, 2006, 440 (7086) :940-943
[49]   Metabolic engineering of ammonium assimilation in xylose-fermenting Saccharomyes cerevisiae improves ethanol production [J].
Roca, C ;
Nielsen, J ;
Olsson, L .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (08) :4732-4736
[50]  
Román-Leshkov Y, 2007, NATURE, V447, P982, DOI 10.1038/nature05923