Generalized proportional-integral controllers

被引:157
作者
Fliess, M
Marquez, R
Delaleau, E
Sira-Ramìrez, H
机构
[1] Ecole Normale Super, Ctr Math Applicat, F-94235 Cachan, France
[2] Ctr Univ Paris Sud, Signaux & Syst Lab, CNRS, Supelec, F-91192 Gif Sur Yvette, France
[3] IPN, CINVESTAV, Dept Ingn Elect, Mexico City 14740, DF, Mexico
来源
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS | 2002年 / 7卷 / 02期
关键词
PID controllers; generalized proportional-integral controllers; integral reconstructors; modules; operational calculus; localization;
D O I
10.1051/cocv:2002002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For constant linear systems we are introducing integral reconstructors and generalized proportional-integral controllers, which permit to bypass the derivative term in the classic PID controllers and more generally the usual asymptotic observers. Our approach, which is mainly of algebraic flavour, is based on the module-theoretic framework for linear systems and on operational calculus in Mikusinski's setting. Several examples are discussed.
引用
收藏
页码:23 / 41
页数:19
相关论文
共 13 条
[1]  
[Anonymous], 1962, OPERATIONAL CALCULUS
[2]  
Astrom K. J., 1995, PID CONTROLLERS THEO
[3]   Finite poles and zeros of linear systems: an intrinsic approach [J].
Bourles, H ;
Fliess, M .
INTERNATIONAL JOURNAL OF CONTROL, 1997, 68 (04) :897-922
[4]  
DANDREA B, 1993, COMMANDE LINEAIRE SY
[5]  
Fliess M., 1994, Linear Algebra and Its Applications, V203-204, P429, DOI 10.1016/0024-3795(94)90212-7
[6]   SOME BASIC STRUCTURAL-PROPERTIES OF GENERALIZED LINEAR-SYSTEMS [J].
FLIESS, M .
SYSTEMS & CONTROL LETTERS, 1990, 15 (05) :391-396
[7]   FLATNESS AND DEFECT OF NONLINEAR-SYSTEMS - INTRODUCTORY THEORY AND EXAMPLES [J].
FLIESS, M ;
LEVINE, J ;
MARTIN, P ;
ROUCHON, P .
INTERNATIONAL JOURNAL OF CONTROL, 1995, 61 (06) :1327-1361
[8]   A Lie-Backlund approach to equivalence and flatness of nonlinear systems [J].
Fliess, M ;
Lévine, J ;
Martin, P ;
Rouchon, P .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (05) :922-937
[9]   A REMARK ON WILLEM TRAJECTORY CHARACTERIZATION OF LINEAR CONTROLLABILITY [J].
FLIESS, M .
SYSTEMS & CONTROL LETTERS, 1992, 19 (01) :43-45
[10]   Continuous-time linear predictive control and flatness: a module-theoretic setting with examples [J].
Fliess, M ;
Marquez, R .
INTERNATIONAL JOURNAL OF CONTROL, 2000, 73 (07) :606-623