The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology

被引:211
作者
Kadurin, Artur [1 ,2 ,3 ,4 ]
Aliper, Alexander [2 ]
Kazennov, Andrey [2 ,7 ]
Mamoshina, Polina [2 ,5 ]
Vanhaelen, Quentin [2 ]
Khrabrov, Kuzma [1 ]
Zhavoronkov, Alex [2 ,6 ,7 ]
机构
[1] Mail Ru Grp Ltd, Search Dept, Moscow, Russia
[2] Johns Hopkins Univ Eastern, Insilico Med Inc, Emerging Technol Ctr, Pharmaceut Artificial Intelligence Dept, Baltimore, MD USA
[3] Kazan Fed Univ, Big Data & Text Anal Lab, Kazan, Russia
[4] Russian Acad Sci, VA Steklov Inst Math, St Petersburg Dept, St Petersburg, Russia
[5] Univ Oxford, Dept Comp Sci, Oxford, England
[6] Biogerontol Res Fdn, Trevissome Pk, Truro TR4 8UN, England
[7] Moscow Inst Phys & Technol, Dolgoprudnyi, Russia
关键词
generative adversarian networks; adversarial autoencoder; deep learning; drug discovery; artificial intelligence; TARGET PREDICTION; DRUG-SENSITIVITY; BIOMARKERS; ACTIVATION;
D O I
10.18632/oncotarget.14073
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Recent advances in deep learning and specifically in generative adversarial networks have demonstrated surprising results in generating new images and videos upon request even using natural language as input. In this paper we present the first application of generative adversarial autoencoders (AAE) for generating novel molecular fingerprints with a defined set of parameters. We developed a 7-layer AAE architecture with the latent middle layer serving as a discriminator. As an input and output the AAE uses a vector of binary fingerprints and concentration of the molecule. In the latent layer we also introduced a neuron responsible for growth inhibition percentage, which when negative indicates the reduction in the number of tumor cells after the treatment. To train the AAE we used the NCI-60 cell line assay data for 6252 compounds profiled on MCF-7 cell line. The output of the AAE was used to screen 72 million compounds in PubChem and select candidate molecules with potential anticancer properties. This approach is a proof of concept of an artificially-intelligent drug discovery engine, where AAEs are used to generate new molecular fingerprints with the desired molecular properties.
引用
收藏
页码:10883 / 10890
页数:8
相关论文
共 42 条
[1]   Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data [J].
Aliper, Alexander ;
Plis, Sergey ;
Artemov, Artem ;
Ulloa, Alvaro ;
Mamoshina, Polina ;
Zhavoronkov, Alex .
MOLECULAR PHARMACEUTICS, 2016, 13 (07) :2524-2530
[2]   Computational models for predicting drug responses in cancer research [J].
Azuaje, Francisco .
BRIEFINGS IN BIOINFORMATICS, 2017, 18 (05) :820-829
[3]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607
[4]  
Bishop C.M., 2006, PATTERN RECOGN, V4, P738, DOI DOI 10.1117/1.2819119
[5]   A community effort to assess and improve drug sensitivity prediction algorithms [J].
Costello, James C. ;
Heiser, Laura M. ;
Georgii, Elisabeth ;
Gonen, Mehmet ;
Menden, Michael P. ;
Wang, Nicholas J. ;
Bansal, Mukesh ;
Ammad-ud-din, Muhammad ;
Hintsanen, Petteri ;
Khan, Suleiman A. ;
Mpindi, John-Patrick ;
Kallioniemi, Olli ;
Honkela, Antti ;
Aittokallio, Tero ;
Wennerberg, Krister ;
Collins, James J. ;
Gallahan, Dan ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Kaski, Samuel ;
Gray, Joe W. ;
Stolovitzky, Gustavo .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1202-U57
[6]  
Dahl George E., 2014, ARXIV14061231V1STATM
[7]  
Denton E. L., 2015, ADV NEURAL INFORM PR, P1486, DOI DOI 10.5555/2969239.2969405
[8]  
Duvenaud David, 2015, ARXIV150909292V2CSLG
[9]  
Dzamba Izharwallach Michael, 2015, ARXIV151002855V1CSLG
[10]   Systematic identification of genomic markers of drug sensitivity in cancer cells [J].
Garnett, Mathew J. ;
Edelman, Elena J. ;
Heidorn, Sonja J. ;
Greenman, Chris D. ;
Dastur, Anahita ;
Lau, King Wai ;
Greninger, Patricia ;
Thompson, I. Richard ;
Luo, Xi ;
Soares, Jorge ;
Liu, Qingsong ;
Iorio, Francesco ;
Surdez, Didier ;
Chen, Li ;
Milano, Randy J. ;
Bignell, Graham R. ;
Tam, Ah T. ;
Davies, Helen ;
Stevenson, Jesse A. ;
Barthorpe, Syd ;
Lutz, Stephen R. ;
Kogera, Fiona ;
Lawrence, Karl ;
McLaren-Douglas, Anne ;
Mitropoulos, Xeni ;
Mironenko, Tatiana ;
Thi, Helen ;
Richardson, Laura ;
Zhou, Wenjun ;
Jewitt, Frances ;
Zhang, Tinghu ;
O'Brien, Patrick ;
Boisvert, Jessica L. ;
Price, Stacey ;
Hur, Wooyoung ;
Yang, Wanjuan ;
Deng, Xianming ;
Butler, Adam ;
Choi, Hwan Geun ;
Chang, JaeWon ;
Baselga, Jose ;
Stamenkovic, Ivan ;
Engelman, Jeffrey A. ;
Sharma, Sreenath V. ;
Delattre, Olivier ;
Saez-Rodriguez, Julio ;
Gray, Nathanael S. ;
Settleman, Jeffrey ;
Futreal, P. Andrew ;
Haber, Daniel A. .
NATURE, 2012, 483 (7391) :570-U87