Performance analysis of the ordered and the conventional catalyst layers in proton exchange membrane fuel cells

被引:34
作者
Du, C. Y. [1 ]
Yang, T. [1 ]
Shi, R. F. [1 ]
Yin, G. P. [1 ]
Cheng, X. Q. [1 ]
机构
[1] Harbin Inst Technol, Dept Appl Chem, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
proton exchange membrane fuel cell; cathode; conventional active layer; ordered active layer; numerical model;
D O I
10.1016/j.electacta.2006.01.047
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Two steady-state, one-dimensional models of the cathode active layer for the proton exchange membrane fuel cell, a conventional active layer model with the agglomerate structure and an ordered active layer model, have been compared. The model equations account for the Tafel kinetics of oxygen reduction reaction, proton migration and oxygen diffusion in the polymer electrolyte and gas pores. The polarization curves simulated by the ordered active layer predict a superior performance than the conventional active layer model even with lower platinum loadings. Analysis of the overpotential contributions indicates that the better performance of the ordered catalyst layer can be attributed to the reduction of concentration polarization. Simulation results also reveal that the ordered active layer gives more uniform oxygen concentration and overpotential distributions while the conventional catalyst layer shows more evenly distributed local current source. The present results will be helpful for practical fuel cell designs. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4934 / 4941
页数:8
相关论文
共 26 条
[1]  
[Anonymous], FUEL CELLS B
[2]   Catalyst gradient for cathode active layer of proton exchange membrane fuel cell [J].
Antoine, O ;
Bultel, Y ;
Ozil, P ;
Durand, R .
ELECTROCHIMICA ACTA, 2000, 45 (27) :4493-4500
[3]  
BARK AJ, 1980, ELECTROCHEMICAL METH
[4]   Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding [J].
Baschuk, JJ ;
Li, XH .
JOURNAL OF POWER SOURCES, 2000, 86 (1-2) :181-196
[5]  
Bird R.B., 2006, TRANSPORT PHENOMENA, Vsecond, DOI 10.1002/aic.690070245
[6]   Design equations for optimized PEM fuel cell electrodes [J].
Boyer, CC ;
Anthony, RG ;
Appleby, AJ .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2000, 30 (07) :777-786
[7]   Modelling the PEM fuel cell cathode [J].
Broka, K ;
Ekdunge, P .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (03) :281-289
[8]   Numerical simulation of the ordered catalyst layer in cathode of Proton Exchange Membrane Fuel Cells [J].
Du, CY ;
Cheng, XQ ;
Yang, T ;
Yin, GP ;
Shi, PF .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (12) :1411-1416
[9]   Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells [J].
Fischer, A ;
Jindra, J ;
Wendt, H .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1998, 28 (03) :277-282
[10]   Simulations of PEFC cathodes: an effectiveness factor approach [J].
Gloaguen, F ;
Durand, R .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1997, 27 (09) :1029-1035