Directing orbits of chaotic systems by particle swarm optimization

被引:48
作者
Liu, B [1 ]
Wang, L
Tang, F
Huang, D
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Shandong Univ, Sch Informat Engn, Weihai 264209, Peoples R China
[3] Beijing Univ Aeronaut & Astronaut, Dept Phys, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2005.08.034
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper applies a novel evolutionary computation algorithm named particle swarm optimization (PSO) to direct the orbits of discrete chaotic dynamical systems towards desired target region within a short time by adding only small bounded perturbations, which could be formulated as a multi-modal numerical optimization problem with high dimension. Moreover, the synchronization of chaotic systems is also studied, which can be dealt with as an online problem of directing orbits. Numerical simulations based on Henon Map demonstrate the effectiveness and efficiency of PSO, and the effects of some parameters are also investigated. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:454 / 461
页数:8
相关论文
共 33 条
[1]   CHAOTIC NEURAL NETWORKS [J].
AIHARA, K ;
TAKABE, T ;
TOYODA, M .
PHYSICS LETTERS A, 1990, 144 (6-7) :333-340
[2]  
[Anonymous], 1989, GENETIC ALGORITHM SE
[3]   Synchronization of uncertain chaotic systems via backstepping approach [J].
Bowong, S ;
Kakmeni, FMM .
CHAOS SOLITONS & FRACTALS, 2004, 21 (04) :999-1011
[4]  
Chen G., 1998, CHAOS ORDER METHODOL
[5]   A general formalism for synchronization in finite dimensional dynamical systems [J].
Chen, LQ .
CHAOS SOLITONS & FRACTALS, 2004, 19 (05) :1239-1242
[6]   Synchronization of an uncertain unified chaotic system via adaptive control [J].
Chen, SH ;
Lü, JH .
CHAOS SOLITONS & FRACTALS, 2002, 14 (04) :643-647
[7]   The particle swarm - Explosion, stability, and convergence in a multidimensional complex space [J].
Clerc, M ;
Kennedy, J .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (01) :58-73
[8]   Global synchronization criterion and adaptive synchronization for new chaotic system [J].
Elabbasy, EM ;
Agiza, HN ;
El-Dessoky, MM .
CHAOS SOLITONS & FRACTALS, 2005, 23 (04) :1299-1309
[9]   Chaos synchronization and parameter identification of three time scales brushless DC motor system [J].
Ge, ZM ;
Cheng, JW .
CHAOS SOLITONS & FRACTALS, 2005, 24 (02) :597-616
[10]   Adaptive feedback synchronization of Lu system [J].
Han, X ;
Lu, JA ;
Wu, X .
CHAOS SOLITONS & FRACTALS, 2004, 22 (01) :221-227