An Integrated Index for the Identification of Focal Electroencephalogram Signals Using Discrete Wavelet Transform and Entropy Measures

被引:150
作者
Sharma, Rajeev [1 ]
Pachori, Ram Bilas [1 ]
Acharya, U. Rajendra [2 ]
机构
[1] Indian Inst Technol, Discipline Elect Engn, Indore 452017, Madhya Pradesh, India
[2] Ngee Ann Polytech, Dept Elect & Comp Engn, Singapore 599489, Singapore
关键词
EEG SIGNALS; AUTOMATED IDENTIFICATION; EPILEPTOGENIC FOCUS; PERMUTATION ENTROPY; EPILEPTIC SEIZURES; CLASSIFICATION; PERFORMANCE; DIAGNOSIS; SYSTEMS; BRAIN;
D O I
10.3390/e17085218
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamics of brain area influenced by focal epilepsy can be studied using focal and non-focal electroencephalogram (EEG) signals. This paper presents a new method to detect focal and non-focal EEG signals based on an integrated index, termed the focal and non-focal index (FNFI), developed using discrete wavelet transform (DWT) and entropy features. The DWT decomposes the EEG signals up to six levels, and various entropy measures are computed from approximate and detail coefficients of sub-band signals. The computed entropy measures are average wavelet, permutation, fuzzy and phase entropies. The proposed FNFI developed using permutation, fuzzy and Shannon wavelet entropies is able to clearly discriminate focal and non-focal EEG signals using a single number. Furthermore, these entropy measures are ranked using different techniques, namely the Bhattacharyya space algorithm, Student's t-test, the Wilcoxon test, the receiver operating characteristic (ROC) and entropy. These ranked features are fed to various classifiers, namely k-nearest neighbour (KNN), probabilistic neural network (PNN), fuzzy classifier and least squares support vector machine (LS-SVM), for automated classification of focal and non-focal EEG signals using the minimum number of features. The identification of the focal EEG signals can be helpful to locate the epileptogenic focus.
引用
收藏
页码:5218 / 5240
页数:23
相关论文
共 69 条
[1]   Automated classification of patients with coronary artery disease using grayscale features from left ventricle echocardiographic images [J].
Acharya, J. Rajendra ;
Sree, S. Vinitha ;
Krishnan, M. Muthu Rama ;
Krishnananda, N. ;
Ranjan, Shetty ;
Umesh, Pai ;
Suri, Jasjit S. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2013, 112 (03) :624-632
[2]   Cost-Effective and Non-Invasive Automated Benign & Malignant Thyroid Lesion Classification in 3D Contrast-Enhanced Ultrasound Using Combination of Wavelets and Textures: A Class of ThyroScan™ Algorithms [J].
Acharya, U. R. ;
Faust, O. ;
Sree, S. V. ;
Molinari, F. ;
Garberoglio, R. ;
Suri, J. S. .
TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2011, 10 (04) :371-380
[3]   Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet transform method [J].
Acharya, U. Rajendra ;
Sudarshan, Vidya K. ;
Ghista, Dhanjoo N. ;
Lim, Wei Jie Eugene ;
Molinari, Filippo ;
Sankaranarayanan, Meena .
KNOWLEDGE-BASED SYSTEMS, 2015, 81 :56-64
[4]   Decision support system for the glaucoma using Gabor transformation [J].
Acharya, U. Rajendra ;
Ng, E. Y. K. ;
Eugene, Lim Wei Jie ;
Noronha, Kevin P. ;
Min, Lim Choo ;
Nayak, K. Prabhakar ;
Bhandary, Sulatha V. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2015, 15 :18-26
[5]   Automated diagnosis of epileptic EEG using entropies [J].
Acharya, U. Rajendra ;
Molinari, Filippo ;
Sree, S. Vinitha ;
Chattopadhyay, Subhagata ;
Ng, Kwan-Hoong ;
Suri, Jasjit S. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2012, 7 (04) :401-408
[6]   APPLICATION OF RECURRENCE QUANTIFICATION ANALYSIS FOR THE AUTOMATED IDENTIFICATION OF EPILEPTIC EEG SIGNALS [J].
Acharya, U. Rajendra ;
Sree, Vinitha S. ;
Chattopadhyay, Subhagata ;
Yu, Wenwei ;
Alvin, Ang Peng Chuan .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2011, 21 (03) :199-211
[7]   An Integrated Index for the Identification of Diabetic Retinopathy Stages Using Texture Parameters [J].
Acharya, U. Rajendra ;
Ng, E. Y. K. ;
Tan, Jen-Hong ;
Sree, S. Vinitha ;
Ng, Kwan-Hoong .
JOURNAL OF MEDICAL SYSTEMS, 2012, 36 (03) :2011-2020
[8]  
ACHARYA UR, 2012, INT J NEURAL SYST, V22, DOI DOI 10.1142/S0129065712500025
[9]   Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients [J].
Andrzejak, Ralph G. ;
Schindler, Kaspar ;
Rummel, Christian .
PHYSICAL REVIEW E, 2012, 86 (04)
[10]  
[Anonymous], COMPUTER METHODS BIO