Artificial transfer hydrogenases based on the biotin-(strept)avidin technology: Fine tuning the selectivity by saturation mutagenesis of the host protein

被引:114
作者
Letondor, Christophe
Pordea, Anca
Humbert, Nicolas
Ivanova, Anita
Mazurek, Sylwester
Novic, Marjana
Ward, Thomas R.
机构
[1] Univ Neuchatel, Inst Chem, CH-2007 Neuchatel, Switzerland
[2] Natl Inst Chem, Lab Chemomet, SI-1001 Ljubljana, Slovenia
关键词
D O I
10.1021/ja061580o
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Incorporation of biotinylated racemic three-legged d(6)-piano stool complexes in streptavidin yields enantioselective transfer hydrogenation artificial metalloenzymes for the reduction of ketones. Having identified the most promising organometallic catalyst precursors in the presence of wild-type streptavidin, fine-tuning of the selectivity is achieved by saturation mutagenesis at position S112. This choice for the genetic optimization site is suggested by docking studies which reveal that this position lies closest to the biotinylated metal upon incorporation into streptavidin. For aromatic ketones, the reaction proceeds smoothly to afford the corresponding enantioenriched alcohols in up to 97% ee (R) or 70% (S). On the basis of these results, we suggest that the enantioselection is mostly dictated by CH/pi interactions between the substrate and the eta(6)-bound arene. However, these enantiodiscriminating interactions can be outweighed in the presence of cationic residues at position S112 to afford the opposite enantiomers of the product.
引用
收藏
页码:8320 / 8328
页数:9
相关论文
共 62 条
[21]   Supramolecular bioinorganic hybrid catalysts for enantioselective transformations [J].
Krämer, R .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (06) :858-860
[22]   Lipase active-site-directed anchoring of organometallics: Metallopincer/protein hybrids [J].
Kruithof, CA ;
Casado, MA ;
Guillena, G ;
Egmond, MR ;
van der Kerk-van Hoof, A ;
Heck, AJR ;
Gebbink, RJMK ;
van Koten, G .
CHEMISTRY-A EUROPEAN JOURNAL, 2005, 11 (23) :6869-6877
[23]   Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation [J].
Letondor, C ;
Humbert, N ;
Ward, TR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (13) :4683-4687
[24]   Catalytic hydrogenation of itaconic acid in a biotinylated Pyrphos-rhodium(I) system in a protein cavity [J].
Lin, CC ;
Lin, CW ;
Chan, ASC .
TETRAHEDRON-ASYMMETRY, 1999, 10 (10) :1887-1893
[25]   Albumin-conjugated corrole metal complexes: Extremely simple yet very efficient biomimetic oxidation systems [J].
Mahammed, A ;
Gross, Z .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (09) :2883-2887
[26]   Remote chiral induction in the organocatalytic hydrosilylation of aromatic ketones and ketimines [J].
Malkov, AV ;
Liddon, AJPS ;
Ramírez-López, P ;
Bendová, L ;
Haigh, D ;
Kocovsky, P .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2006, 45 (09) :1432-1435
[27]   Improving enzyme properties: when are closer mutations better? [J].
Morley, KL ;
Kazlauskas, RJ .
TRENDS IN BIOTECHNOLOGY, 2005, 23 (05) :231-237
[28]  
Morris GM, 1998, J COMPUT CHEM, V19, P1639, DOI 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO
[29]  
2-B
[30]   Bifunctional metal-ligand catalysis:: Hydrogenations and new reactions within the metal-(di)amine scaffold [J].
Muñiz, K .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (41) :6622-6627