A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network

被引:602
作者
Jia, JB [1 ]
Wang, BQ [1 ]
Wu, AG [1 ]
Cheng, GJ [1 ]
Li, Z [1 ]
Dong, SJ [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
关键词
D O I
10.1021/ac011116w
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A novel method for fabrication of horseradish peroxidase biosensor has been developed by self-assembling gold nanoparticles to a thiol-containing sol-gel network. A cleaned gold electrode was first immersed in a hydrolyzed (3-mercaptopropyl)-trimethoxysilane (MPS) sol-gel solution to assemble three-dimensional silica gel, and then gold nanoparticles were chemisorbed onto the thiol groups of the sol-gel network. Finally, horseradish peroxidase (HRP) was adsorbed onto the surface of the gold nanoparticles. The distribution of gold nanoparticles and HRP was examined by atomic force microscopy (AFM). The immobilized horseradish peroxidase exhibited direct electrochemical behavior toward the reduction of hydrogen peroxide. The performance and factors influencing the performance of the resulting biosensor were studied in detail. The resulting biosensor exhibited fast amperometric response (2.5 s) to H2O2. The detection limit of the biosensor was 2.0 mumol L-1, and the linear range was from 5.0 mumol L-1 to 10.0 mmol L-1. Moreover, the studied biosensor exhibited high sensitivity, good reproducibility, and long-term stability.
引用
收藏
页码:2217 / 2223
页数:7
相关论文
共 63 条
[1]   Recent developments in faradaic bioelectrochemistry [J].
Armstrong, FA ;
Wilson, GS .
ELECTROCHIMICA ACTA, 2000, 45 (15-16) :2623-2645
[2]   Novel electrochemical interfaces with a tunable kinetic barrier by self-assembling organically modified silica gel and gold nanoparticles [J].
Bharathi, S ;
Nogami, M ;
Ikeda, S .
LANGMUIR, 2001, 17 (01) :1-4
[3]   Sol-gel-derived nanocrystalline gold-silicate composite biosensor [J].
Bharathi, S ;
Lev, O .
ANALYTICAL COMMUNICATIONS, 1998, 35 (01) :29-31
[4]   BIOCHEMICALLY ACTIVE SOL-GEL GLASSES - THE TRAPPING OF ENZYMES [J].
BRAUN, S ;
RAPPOPORT, S ;
ZUSMAN, R ;
AVNIR, D ;
OTTOLENGHI, M .
MATERIALS LETTERS, 1990, 10 (1-2) :1-5
[5]   Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes [J].
Brown, KR ;
Fox, AP ;
Natan, MJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (05) :1154-1157
[6]   Direct electrochemistry of heme proteins: effect of electrode surface modification by neutral surfactants [J].
Chattopadhyay, K ;
Mazumdar, S .
BIOELECTROCHEMISTRY, 2001, 53 (01) :17-24
[7]   Characterization of the direct electron transfer and bioelectrocatalysis of horseradish peroxidase in DNA film at pyrolytic graphite electrode [J].
Chen, XH ;
Ruan, CM ;
Kong, JL ;
Deng, JQ .
ANALYTICA CHIMICA ACTA, 2000, 412 (1-2) :89-98
[8]   A CARRAGEENAN HYDROGEL STABILIZED COLLOIDAL GOLD MULTIENZYME BIOSENSOR ELECTRODE UTILIZING IMMOBILIZED HORSERADISH-PEROXIDASE AND CHOLESTEROL OXIDASE CHOLESTEROL ESTERASE TO DETECT CHOLESTEROL IN SERUM AND WHOLE-BLOOD [J].
CRUBLISS, AL ;
STONEHUERNER, JG ;
HENKENS, RW ;
ZHAO, J ;
ODALY, JP .
BIOSENSORS & BIOELECTRONICS, 1993, 8 (06) :331-337
[9]   COLLOIDAL GOLD AS A BIOCOMPATIBLE IMMOBILIZATION MATRIX SUITABLE FOR THE FABRICATION OF ENZYME ELECTRODES BY ELECTRODEPOSITION [J].
CRUMBLISS, AL ;
PERINE, SC ;
STONEHUERNER, J ;
TUBERGEN, KR ;
ZHAO, JG ;
HENKENS, RW .
BIOTECHNOLOGY AND BIOENGINEERING, 1992, 40 (04) :483-490
[10]  
CRUMBLISS AL, 1994, NEW J CHEM, V18, P327