共 54 条
Organic p-i-n solar cells
被引:274
作者:
Maennig, B
[1
]
Drechsel, J
Gebeyehu, D
Simon, P
Kozlowski, F
Werner, A
Li, F
Grundmann, S
Sonntag, S
Koch, M
Leo, K
Pfeiffer, M
Hoppe, H
Meissner, D
Sariciftci, NS
Riedel, I
Dyakonov, V
Parisi, J
机构:
[1] Tech Univ Dresden, Inst Angew Photophys, D-01062 Dresden, Germany
[2] Max Planck Inst Chem Phys Solids, D-01187 Dresden, Germany
[3] Johannes Kepler Univ Linz, Linz Inst Organ Solar Cells, A-4040 Linz, Austria
[4] Carl von Ossietzky Univ Oldenburg, Energy & Semicond Res Lab, Inst Phys, D-26111 Oldenburg, Germany
来源:
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
|
2004年
/
79卷
/
01期
关键词:
D O I:
10.1007/s00339-003-2494-9
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
We introduce a p-i-n-type heterojunction architecture for organic solar cells where the active region is sandwiched between two doped wide-gap layers. The term p-i-n means here a layer sequence in the form p-doped layer, intrinsic layer and n-doped layer. The doping is realized by controlled co-evaporation using organic dopants and leads to conductivities of 10(-4) to 10(-5) S/cm in the p- and n-doped wide-gap layers, respectively. The photoactive layer is formed by a mixture of phthalocyanine zinc (ZnPc) and the fullerene C-60 and shows mainly amorphous morphology. As a first step towards p-i-n structures, we show the advantage of using wide-gap layers in M-i-p-type diodes (metal layer-intrinsic layer-p-doped layer). The solar cells exhibit a maximum external quantum efficiency of 40% between 630-nm and 700-nm wavelength. With the help of an optical multilayer model, we optimize the optical properties of the solar cells by placing the active region at the maximum of the optical field distribution. The results of the model are largely confirmed by the experimental findings. For an optically optimized device, we find an internal quantum efficiency of around 82% under short-circuit conditions. Adding a layer of 10-nm thickness of the red material N,N-'-dimethylperylene-3,4:9,10-dicarboximide (Me-PTCDI) to the active region, a power-conversion efficiency of 1.9% for a single cell is obtained. Such optically thin cells with high internal quantum efficiency are an important step towards high-efficiency tandem cells. First tandem cells which are not yet optimized already show 2.4% power-conversion efficiency under simulated AM 1.5 illumination of 125 mW/cm(2) .
引用
收藏
页码:1 / 14
页数:14
相关论文