Functional coverage of the human genome by existing structures, structural genomics targets, and homology models

被引:54
作者
Xie, L
Bourne, PE [1 ]
机构
[1] Univ Calif San Diego, San Diego Supercomp Ctr, San Diego, CA 92103 USA
[2] Univ Calif San Diego, Dept Pharmacol, San Diego, CA USA
关键词
D O I
10.1371/journal.pcbi.0010031
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB), target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB), it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the "most wanted list" that should be solved is available on a weekly basis from http://function.rcsb. org:8080/pdb/function-distribution/index.html..
引用
收藏
页码:222 / 229
页数:8
相关论文
共 54 条
  • [1] Gapped BLAST and PSI-BLAST: a new generation of protein database search programs
    Altschul, SF
    Madden, TL
    Schaffer, AA
    Zhang, JH
    Zhang, Z
    Miller, W
    Lipman, DJ
    [J]. NUCLEIC ACIDS RESEARCH, 1997, 25 (17) : 3389 - 3402
  • [2] Apic Gordana, 2003, Journal of Structural and Functional Genomics, V4, P67, DOI 10.1023/A:1026113408773
  • [3] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [4] The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000
    Bairoch, A
    Apweiler, R
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (01) : 45 - 48
  • [5] The universal protein resource (UniProt)
    Bairoch, Amos
    Bougueleret, Lydie
    Altairac, Severine
    Amendolia, Valeria
    Auchincloss, Andrea
    Puy, Ghislaine Argoud
    Axelsen, Kristian
    Baratin, Delphine
    Blatter, Marie-Claude
    Boeckmann, Brigitte
    Bollondi, Laurent
    Boutet, Emmanuel
    Quintaje, Silvia Braconi
    Breuza, Lionel
    Bridge, Alan
    deCastro, Edouard
    Coral, Danielle
    Coudert, Elisabeth
    Cusin, Isabelle
    Dobrokhotov, Pavel
    Dornevil, Dolnide
    Duvaud, Severine
    Estreicher, Anne
    Famiglietti, Livia
    Feuermann, Marc
    Gehant, Sebastian
    Farriol-Mathis, Nathalie
    Ferro, Serenella
    Gasteiger, Elisabeth
    Gateau, Alain
    Gerritsen, Vivienne
    Gos, Arnaud
    Gruaz-Gumowski, Nadine
    Hinz, Ursula
    Hulo, Chantal
    Hulo, Nicolas
    Ioannidis, Vassilios
    Ivanyi, Ivan
    James, Janet
    Jain, Eric
    Jimenez, Silvia
    Jungo, Florence
    Junker, Vivien
    Keller, Guillaume
    Lachaize, Corinne
    Lane-Guermonprez, Lydie
    Langendijk-Genevaux, Petra
    Lara, Vicente
    Lemercier, Philippe
    Le Saux, Virginie
    [J]. NUCLEIC ACIDS RESEARCH, 2007, 35 : D193 - D197
  • [6] Protein structure prediction and structural genomics
    Baker, D
    Sali, A
    [J]. SCIENCE, 2001, 294 (5540) : 93 - 96
  • [7] Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkr1065, 10.1093/nar/gkh121]
  • [8] Population statistics of protein structures: Lessons from structural classifications
    Brenner, SE
    Chothia, C
    Hubbard, TJP
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 1997, 7 (03) : 369 - 376
  • [9] Brenner SE, 2000, PROTEIN SCI, V9, P197
  • [10] Target selection for structural genomics
    Brenner, SE
    [J]. NATURE STRUCTURAL BIOLOGY, 2000, 7 (Suppl 11) : 967 - 969