Surface-enhanced Raman scattering of SnO2 bulk material and colloidal solutions

被引:48
作者
Fazio, Enza [1 ]
Neri, Fortunato [1 ]
Savasta, Salvatore [1 ]
Spadaro, Salvatore [2 ]
Trusso, Sebastiano [3 ]
机构
[1] Univ Messina, Dipartimento Fis Mat & Ingn Elettron, I-98166 Messina, Italy
[2] Adv & Nano Mat Res Srl, I-98166 Messina, Italy
[3] CNR IPCF, Ist Proc Chim Fis, I-98158 Messina, Italy
关键词
NANOCRYSTALLINE SNO2; GOLD NANOPARTICLES; LATTICE-DYNAMICS; RUTILE-STRUCTURE; SPECTRUM; TEMPERATURE; SERS; SPECTROSCOPY; PRESSURE; GROWTH;
D O I
10.1103/PhysRevB.85.195423
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Surface-enhanced Raman scattering (SERS) effects on tin dioxide in the form of bulk material, nanostructured thin films, and colloidal solutions were investigated. Raman spectra are characterized by the three Raman scattering peaks at 478, 633, and 776 cm(-1), assigned to the E-g, A(1g), and B-2g modes, typical of rutile SnO2. In the presence of the silver nanoparticles, in addition to the enhancement intensity of some of the fundamental tin dioxide rutile Raman features, the appearance of a new Raman scattering peak at about 600 cm(-1) is observed. These spectral features are observed, in the presence of silver nanoparticles, also in other SnO2-based systems such as pulsed laser deposited thin films, with different stoichiometry, and in water colloidal solutions. The observed SERS effects are explained in terms of electric field gradient mechanism that are generated near a metal surface. In particular, the appearance of a peak near 600 cm(-1) is attributed to the Raman activation of the infrared E-u transverse optical mode.
引用
收藏
页数:7
相关论文
共 48 条
[1]   SERS-Based Diagnosis and Biodetection [J].
Alvarez-Puebla, Ramon A. ;
Liz-Marzan, Luis M. .
SMALL, 2010, 6 (05) :604-610
[2]   Evidences of the evolution from solid solution to surface segregation in Ni-doped SnO2 nanoparticles using Raman spectroscopy [J].
Aragon, F. H. ;
Coaquira, J. A. H. ;
Hidalgo, P. ;
da Silva, S. W. ;
Brito, S. L. M. ;
Gouvea, D. ;
Moraisa, P. C. .
JOURNAL OF RAMAN SPECTROSCOPY, 2011, 42 (05) :1081-1086
[3]   Electric field gradient effects in Raman spectroscopy [J].
Ayars, EJ ;
Hallen, HD ;
Jahncke, CL .
PHYSICAL REVIEW LETTERS, 2000, 85 (19) :4180-4183
[4]   Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane [J].
Bahrami, B. ;
Khodadadi, A. ;
Kazemeini, M. ;
Mortazavi, Y. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 133 (01) :352-356
[5]   The surface and materials science of tin oxide [J].
Batzill, M ;
Diebold, U .
PROGRESS IN SURFACE SCIENCE, 2005, 79 (2-4) :47-154
[6]   RAMAN SCATTERING BY POLARITONS [J].
BURSTEIN, E ;
USHIODA, S ;
PINCZUK, A .
SOLID STATE COMMUNICATIONS, 1968, 6 (06) :407-&
[7]  
Campion A., 1983, Journal de Physique Colloque, V44, P341, DOI 10.1051/jphyscol:19831068
[8]   Growth and lattice dynamics of single-crystalline SnO2 nanowires prepared by annealing a gel precursor [J].
Cheng, Baochang ;
Xie, Cuicui ;
Fang, Liting ;
Xiao, Yanhe ;
Lei, Shuijin .
MATERIALS CHEMISTRY AND PHYSICS, 2011, 129 (03) :713-717
[9]   Facile one-pot synthesis of mesoporous SnO2 microspheres via nanoparticles assembly and lithium storage properties [J].
Demir-Cakan, Rezan ;
Hu, Yong-Sheng ;
Antonietti, Markus ;
Maier, Joachim ;
Titirici, Maria-Magdalena .
CHEMISTRY OF MATERIALS, 2008, 20 (04) :1227-1229
[10]   The complete Raman spectrum of nanometric SnO2 particles [J].
Diéguez, A ;
Romano-Rodríguez, A ;
Vilà, A ;
Morante, JR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (03) :1550-1557