Evidences of the evolution from solid solution to surface segregation in Ni-doped SnO2 nanoparticles using Raman spectroscopy

被引:80
作者
Aragon, F. H. [1 ]
Coaquira, J. A. H. [1 ]
Hidalgo, P. [2 ]
da Silva, S. W. [1 ]
Brito, S. L. M. [3 ]
Gouvea, D. [3 ]
Moraisa, P. C. [1 ]
机构
[1] Univ Brasilia, Inst Phys, BR-70910900 Brasilia, DF, Brazil
[2] Univ Brasilia, Sect Cent Gama, Fac Gama FGA, BR-72405610 Brasilia, DF, Brazil
[3] Univ Sao Paulo, Escola Politecn, Dept Met & Mat Engn, BR-05508900 Sao Paulo, Brazil
关键词
Ni-doped SnO2 nanoparticles; oxide-diluted magnetic semiconductors; Raman spectroscopy; NANOCRYSTALLINE SNO2; PHOTOLUMINESCENCE PROPERTY; X-RAY; SENSOR; TEMPERATURE; SPECTRUM; POWDERS; IONS;
D O I
10.1002/jrs.2802
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Ni-doped SnO2 nanoparticles, promising for gas-sensing applications, have been synthesized by a polymer precursor method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data analyses indicate the exclusive formation of nanosized particles with rutile-type phase (tetragonal SnO2) for Ni contents below 10 mol%. The mean crystallite size shows a progressive reduction with the Ni content. Room-temperature Raman spectra of Ni-doped SnO2 nanoparticles show the presence of Raman active modes and modes activated by size effects. From the evolution of the A(1g) mode with the Ni content, a solubility limit at similar to 2 mol% was estimated. Below that content, Raman results are consistent with the occurrence of solid solution (ss) and surface segregation (seg.) of Ni ions. Above similar to 2 mol% Ni, the redshift of A(1g) mode suggests that the surface segregation of Ni ions takes place. Disorder-activated bands were determined and their integrated intensity evolution with the Ni content suggest that the solid-solution regime favors the increase of disorder; meanwhile, that disorder becomes weaker as the Ni content is increased. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:1081 / 1086
页数:6
相关论文
共 42 条
[1]   Structural characterization of nanocrystalline SnO2 by X-ray and Raman spectroscopy [J].
Abello, L ;
Bochu, B ;
Gaskov, A ;
Koudryavtseva, S ;
Lucazeau, G ;
Roumyantseva, M .
JOURNAL OF SOLID STATE CHEMISTRY, 1998, 135 (01) :78-85
[2]  
ARAGON FH, 2010, J NONCRYSTALLINE SOL
[3]  
ARAGON FH, 2010, UNPUB
[4]   Enhanced CO sensitivity and selectivity of gold nanoparticles-doped SnO2 sensor in presence of propane and methane [J].
Bahrami, B. ;
Khodadadi, A. ;
Kazemeini, M. ;
Mortazavi, Y. .
SENSORS AND ACTUATORS B-CHEMICAL, 2008, 133 (01) :352-356
[5]   Ultraviolet free-exciton light emission in Er-passivated SnO2 nanocrystals in silica [J].
Brovelli, S. ;
Chiodini, N. ;
Meinardi, F. ;
Lauria, A. ;
Paleari, A. .
APPLIED PHYSICS LETTERS, 2006, 89 (15)
[6]  
Castro RHR, 2005, EUR J INORG CHEM, P2134
[7]   Charge-transfer ferromagnetism in oxide nanoparticles [J].
Coey, J. M. D. ;
Wongsaprom, Kwanruthai ;
Alaria, J. ;
Venkatesan, M. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (13)
[8]   Donor impurity band exchange in dilute ferromagnetic oxides [J].
Coey, JMD ;
Venkatesan, M ;
Fitzgerald, CB .
NATURE MATERIALS, 2005, 4 (02) :173-179
[9]   The complete Raman spectrum of nanometric SnO2 particles [J].
Diéguez, A ;
Romano-Rodríguez, A ;
Vilà, A ;
Morante, JR .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (03) :1550-1557
[10]   Impurity induced formation of Sn2+ ions in SnO2 and the photoluminescence property [J].
Fang, Ming ;
Tan, Xiaoli ;
Cao, Xueli ;
Zhang, Lide ;
Liu, Peisheng ;
Jiang, Zhi .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (24) :7648-7651