Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy

被引:279
作者
Chen, Qian [1 ,2 ]
Wang, Chao [1 ,2 ]
Cheng, Liang [1 ,2 ]
He, Weiwei [3 ]
Cheng, Zhengping [3 ]
Liu, Zhuang [1 ,2 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Jiangsu, Peoples R China
[2] Soochow Univ, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Jiangsu, Peoples R China
[3] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Dept Polymer Sci & Engn, Jiangsu Key Lab Adv Funct Polymer Design & Applic, Suzhou 215006, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Upconversion nanoparticles; Toxicity; Photothermal therapy; Photodynamic therapy; Combination therapy; GRAPHENE OXIDE; DRUG-DELIVERY; IN-VITRO; UPCONVERTING NANOPARTICLES; SURFACE-CHEMISTRY; SINGLET OXYGEN; CANCER; LIGHT; AGENT; PHOTOSENSITIZER;
D O I
10.1016/j.biomaterials.2013.12.046
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this work, we develop a multifunctional nano-platform by coating upconversion nanoparticles (UCNPs) with bovine serum albumin (BSA), obtaining UCNP@BSA nanoparticles with great solubility and stability in physiological environments. Two types of dye molecules, including a photosensitizer, Rose Bengal (RB), and an NIR-absorbing dye, IR825, can be simultaneously loaded into the BSA layer of the UCNP@BSA nanoparticles. In this carefully designed UCNP@BSA-RB &; IR825 system, RB absorbs green light emitted from UCNPs under 980-nm excitation to induce photodynamic cancer cell killing, while IR825 whose absorbance shows no overlap with upconversion excitation and emission wavelengths, offers nanoparticles a strong photothermal perform under 808-nm laser irradiation. Without showing noticeable dark toxicity, the obtained dual-dye loaded nanoparticles are able to kill cancer via combined photothermal and photodynamic therapies, both of which are induced by NIR light with high tissue penetration, by a synergetic manner both in vitro and in vivo. In addition, the intrinsic paramagnetic and optical properties of Gd3+-doped UCNPs can further be utilized for in vivo dual modal imaging. Our study suggests that UCNPs with well-designed surface engineering could serve as a multifunctional nano-platform promising in cancer theranostics.
引用
收藏
页码:2915 / 2923
页数:9
相关论文
共 44 条
[1]   Photodynamic therapy and anti-tumour immunity [J].
Castano, Ana P. ;
Mroz, Pawel ;
Hamblin, Michael R. .
NATURE REVIEWS CANCER, 2006, 6 (07) :535-545
[2]   Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization [J].
Celli, Jonathan P. ;
Spring, Bryan Q. ;
Rizvi, Imran ;
Evans, Conor L. ;
Samkoe, Kimberley S. ;
Verma, Sarika ;
Pogue, Brian W. ;
Hasan, Tayyaba .
CHEMICAL REVIEWS, 2010, 110 (05) :2795-2838
[3]   Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells [J].
Chatterjee, Dev K. ;
Yong, Zhang .
NANOMEDICINE, 2008, 3 (01) :73-82
[4]   A Uniform Sub-50 nm-Sized Magnetic/Upconversion Fluorescent Bimodal Imaging Agent Capable of Generating Singlet Oxygen by Using a 980 nm Laser [J].
Chen, Feng ;
Zhang, Shengjian ;
Bu, Wenbo ;
Chen, Yu ;
Xiao, Qingfeng ;
Liu, Jianan ;
Xing, Huaiyong ;
Zhou, Liangping ;
Peng, Weijun ;
Shi, Jianlin .
CHEMISTRY-A EUROPEAN JOURNAL, 2012, 18 (23) :7082-7090
[5]   Gold Nanocages: A Novel Class of Multifunctional Nanomaterials for Theranostic Applications [J].
Chen, Jingyi ;
Yang, Miaoxin ;
Zhang, Qiang ;
Cho, Eun Chul ;
Cobley, Claire M. ;
Kim, Chulhong ;
Glaus, Charles ;
Wang, Lihong V. ;
Welch, Michael J. ;
Xia, Younan .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (21) :3684-3694
[6]   PEGylated Micelle Nanoparticles Encapsulating a Non-Fluorescent Near-Infrared Organic Dye as a Safe and Highly-Effective Photothermal Agent for In Vivo Cancer Therapy [J].
Cheng, Liang ;
He, Weiwei ;
Gong, Hua ;
Wang, Chao ;
Chen, Qian ;
Cheng, Zhengping ;
Liu, Zhuang .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (47) :5893-5902
[7]  
Cheng L, 2012, ACS NANO, V6, P5605, DOI [10.1021/nn304719q, 10.1021/nn301539m]
[8]   Facile Preparation of Multifunctional Upconversion Nanoprobes for Multimodal Imaging and Dual-Targeted Photothermal Therapy [J].
Cheng, Liang ;
Yang, Kai ;
Li, Yonggang ;
Chen, Jianhua ;
Wang, Chao ;
Shao, Mingwang ;
Lee, Shuit-Tong ;
Liu, Zhuang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (32) :7385-7390
[9]   Surface modification of poly(dimethylsiloxane) by two-step plasma treatment for further grafting with chitosan-Rose Bengal photosensitizer [J].
Ferreira, Ana Marina ;
Carmagnola, Irene ;
Chiono, Valeria ;
Gentile, Piergiorgio ;
Fracchia, Letizia ;
Ceresa, Chiara ;
Georgiev, George ;
Ciardelli, Gianluca .
SURFACE & COATINGS TECHNOLOGY, 2013, 223 :92-97
[10]   Multimodal-Luminescence Core-Shell Nanocomposites for Targeted Imaging of Tumor Cells [J].
Hu, He ;
Xiong, Liqin ;
Zhou, Jing ;
Li, Fuyou ;
Cao, Tianye ;
Huang, Chunhui .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (14) :3577-3584