Inverse beta transformation in kernel density estimation

被引:23
作者
Bolance, Catalina [1 ]
Guillen, Montserrat [1 ]
Nielsen, Jens Perch [2 ]
机构
[1] Univ Barcelona, Dept Econometr, RFA IREA, Barcelona 08034, Spain
[2] City Univ London, Cass Business Sch, London EC1Y 8TZ, England
关键词
D O I
10.1016/j.spl.2008.01.028
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A transformation kernel density estimator that is suitable for heavy-tailed distributions is presented. Using a double transformation, the choice of the bandwidth parameter becomes straightforward. An illustration and simulation results are presented. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1757 / 1764
页数:8
相关论文
共 11 条
[1]   Kernel density estimation of actuarial loss functions [J].
Bolancé, C ;
Guillen, M ;
Nielsen, JP .
INSURANCE MATHEMATICS & ECONOMICS, 2003, 32 (01) :19-36
[2]   Kernel density estimation for heavy-tailed distributions using the Champernowne transformation [J].
Buch-Larsen, T ;
Nielsen, JP ;
Guillén, M ;
Bolancé, C .
STATISTICS, 2005, 39 (06) :503-518
[3]   Mobius-like mappings and their use in kernel density estimation [J].
Clements, A ;
Hurn, S ;
Lindsay, K .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (464) :993-1000
[4]  
Johnson N., 1995, CONTINUOUS UNIVARIAT, V2
[5]  
Jones M.C., 1990, AUSTR NZ J STAT, V32, P361
[6]  
Silverman B. W., 1986, DENSITY ESTIMATION S, DOI 10.1201/9781315140919
[7]   OVERSMOOTHED NONPARAMETRIC DENSITY ESTIMATES [J].
TERRELL, GR ;
SCOTT, DW .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1985, 80 (389) :209-214
[8]   THE MAXIMAL SMOOTHING PRINCIPLE IN DENSITY-ESTIMATION [J].
TERRELL, GR .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :470-477
[9]  
Wand M. P., 1995, Kernel Smoothing
[10]   TRANSFORMATIONS IN DENSITY-ESTIMATION [J].
WAND, MP ;
MARRON, JS ;
RUPPERT, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (414) :343-353