Near-field optics and control of photonic crystals

被引:16
作者
Koenderink, AF
Wüest, R
Buchler, BC
Richter, S
Strasser, P
Kafesaki, M
Rogach, A
Wehrspohn, RB
Soukoulis, CM
Erni, D
Robin, F
Jäckel, H
Sandoghdar, V [1 ]
机构
[1] ETH, Swiss Fed Inst Technol, Lab Phys Chem, CH-8093 Zurich, Switzerland
[2] ETH, Swiss Fed Inst Technol, Electron Lab, CH-8092 Zurich, Switzerland
[3] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
[4] FORTH, IESL, Iraklion 71110, Greece
[5] Univ Munich, Dept Phys & CeNS, D-80799 Munich, Germany
[6] Univ Gesamthsch Paderborn, Dept Phys, D-33098 Paderborn, Germany
[7] ETH, Swiss Fed Inst Technol, Lab Electromagnet Fields & Microwave Elect, CH-8092 Zurich, Switzerland
[8] Iowa State Univ, Ames Lab, Ames, IA 50011 USA
[9] Univ Crete, Dept Mat Sci & Technol, Iraklion, Greece
关键词
photonic crystal; scanning near-field optical microscopy; integrated optics; cavity quantum electrodynamics; spontaneous emission;
D O I
10.1016/j.photonics.2005.09.007
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We discuss recent progress and the exciting potential of scanning probe microscopy methods for the characterization and control of photonic crystals. We demonstrate that scanning near-field optical microscopy can be used to characterize the performance of photonic crystal device components on the sub-wavelength scale. In addition, we propose scanning probe techniques for realizing local, low-loss tuning of photonic crystal resonances, based on the frequency shifts that high-index nanoscopic probes can induce. Finally, we discuss prospects for on-demand spontaneous emission control. We demonstrate theoretically that photonic crystal membranes induce large variations in spontaneous emission rate over length scales of 50 nm that can be probed by single light sources, or nanoscopic ensembles of light sources attached to the end of a scanning probe. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 69 条
[1]  
ABBE E, 2006, GESAMMELTE ABHANDLUN, V2
[2]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[3]   Deterministic coupling of single quantum dots to single nanocavity modes [J].
Badolato, A ;
Hennessy, K ;
Atatüre, M ;
Dreiser, J ;
Hu, E ;
Petroff, PM ;
Imamoglu, A .
SCIENCE, 2005, 308 (5725) :1158-1161
[4]   Near-field imaging of light propagation in photonic crystal waveguides: Explicit role of Bloch harmonics [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Sondergaard, T ;
Boltasseva, A ;
Borel, PI ;
Kristensen, M .
PHYSICAL REVIEW B, 2002, 66 (23) :1-9
[5]   Direct mapping of light propagation in photonic crystal waveguides [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Arentoft, J ;
Boltasseva, A ;
Sondergaard, T ;
Kristensen, M .
OPTICS COMMUNICATIONS, 2002, 212 (1-3) :51-55
[6]   Photonic band gap formation in certain self-organizing systems [J].
Busch, K ;
John, S .
PHYSICAL REVIEW E, 1998, 58 (03) :3896-3908
[7]   Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal [J].
Englund, D ;
Fattal, D ;
Waks, E ;
Solomon, G ;
Zhang, B ;
Nakaoka, T ;
Arakawa, Y ;
Yamamoto, Y ;
Vuckovic, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[8]   Spatial homogeneity of optically switched semiconductor photonic crystals and of bulk semiconductors [J].
Euser, TG ;
Vos, WL .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (04)
[9]  
FLUCK E, 2004, PHOTONIC NANOSTRUCT, V2, P127
[10]   Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals [J].
Fujita, M ;
Takahashi, S ;
Tanaka, Y ;
Asano, T ;
Noda, S .
SCIENCE, 2005, 308 (5726) :1296-1298