Multiple critical points for indefinite functionals and applications

被引:7
作者
Candela, AM
Giannoni, F
Masiello, A
机构
[1] Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Aquila, Dipartimento Energet, Fac Ingn, I-67040 Laquila, Italy
关键词
D O I
10.1006/jdeq.1998.3572
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove a multiplicity result for critical points of an indefinite functional on a manifold by using a generalization of the Ljusternik-Schnirelman category. The abstract result is applied to prove the existence of multiple timelike trajectories for Lorentzian manifolds of splitting type. (C) 1999 Academic Press.
引用
收藏
页码:203 / 230
页数:28
相关论文
共 25 条
[1]   ON THE EXISTENCE OF INFINITELY MANY GEODESICS ON SPACE-TIME MANIFOLDS [J].
BENCI, V ;
FORTUNATO, D .
ADVANCES IN MATHEMATICS, 1994, 105 (01) :1-25
[2]   ON THE GEODESIC CONNECTEDNESS OF LORENTZIAN MANIFOLDS [J].
BENCI, V ;
FORTUNATO, D ;
MASIELLO, A .
MATHEMATISCHE ZEITSCHRIFT, 1994, 217 (01) :73-93
[3]   ON THE EXISTENCE OF MULTIPLE GEODESICS IN STATIC SPACE-TIMES [J].
BENCI, V ;
FORTUNATO, D ;
GIANNONI, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (01) :79-102
[4]  
BENCI V, 1990, VARIATIONAL METHODS, V4, P413
[5]   INFINITE CUP LENGTH IN FREE LOOP-SPACES WITH AN APPLICATION TO A PROBLEM OF THE N-BODY TYPE [J].
FADELL, E ;
HUSSEINI, S .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (03) :305-319
[6]   CATEGORY OF LOOP-SPACES OF OPEN SUBSETS IN EUCLIDEAN-SPACE [J].
FADELL, E ;
HUSSEINI, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (12) :1153-1161
[7]  
Fadell E., 1996, REND SEM MAT FIS, V64, P99
[8]  
FADELL E, 1985, LECT COHOMOLOGICAL
[9]  
FOURNIER G, 1990, VARIATIONAL METHODS, V4, P104
[10]  
FOURNIER G, 1994, DYN REPORT, V3, P1