A computational approach for identifying microRNA-target interactions using high-throughput CLIP and PAR-CLIP sequencing

被引:35
作者
Chou, Chih-Hung [1 ]
Lin, Feng-Mao [1 ]
Chou, Min-Te [1 ]
Hsu, Sheng-Da [1 ]
Chang, Tzu-Hao [2 ]
Weng, Shun-Long [1 ,3 ,4 ,5 ,6 ]
Shrestha, Sirjana [1 ]
Hsiao, Chiung-Chih [1 ]
Hung, Jui-Hung [1 ,3 ]
Huang, Hsien-Da [1 ,3 ]
机构
[1] Natl Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu 300, Taiwan
[2] Taipei Med Univ, Grad Inst Biomed Informat, Taipei, Taiwan
[3] Natl Chiao Tung Univ, Dept Biol Sci & Technol, Hsinchu 300, Taiwan
[4] Hsinchu Mackay Mem Hosp, Dept Obstet & Gynecol, Hsinchu, Taiwan
[5] Mackay Med Nursing & Management Coll, Taipei, Taiwan
[6] Mackay Med Coll, Dept Med, New Taipei City, Taiwan
来源
BMC GENOMICS | 2013年 / 14卷
关键词
TRANSCRIPTOME-WIDE IDENTIFICATION; RNA INTERACTION MAPS; BINDING-SITES; MIRNA TARGETS; DATABASE; BIOGENESIS; DISCOVERY; PROTEIN; GENOME; GROWTH;
D O I
10.1186/1471-2164-14-S1-S2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: MicroRNAs (miRNAs) play a critical role in down-regulating gene expression. By coupling with Argonaute family proteins, miRNAs bind to target sites on mRNAs and employ translational repression. A large amount of miRNA-target interactions (MTIs) have been identified by the crosslinking and immunoprecipitation (CLIP) and the photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) along with the next-generation sequencing (NGS). PAR-CLIP shows high efficiency of RNA co-immunoprecipitation, but it also lead to T to C conversion in miRNA-RNA-protein crosslinking regions. This artificial error obviously reduces the mappability of reads. However, a specific tool to analyze CLIP and PAR-CLIP data that takes T to C conversion into account is still in need. Results: We herein propose the first CLIP and PAR-CLIP sequencing analysis platform specifically for miRNA target analysis, namely miRTarCLIP. From scratch, it automatically removes adaptor sequences from raw reads, filters low quality reads, reverts C to T, aligns reads to 3'UTRs, scans for read clusters, identifies high confidence miRNA target sites, and provides annotations from external databases. With multi-threading techniques and our novel C to T reversion procedure, miRTarCLIP greatly reduces the running time comparing to conventional approaches. In addition, miRTarCLIP serves with a web-based interface to provide better user experiences in browsing and searching targets of interested miRNAs. To demonstrate the superior functionality of miRTarCLIP, we applied miRTarCLIP to two public available CLIP and PAR-CLIP sequencing datasets. miRTarCLIP not only shows comparable results to that of other existing tools in a much faster speed, but also reveals interesting features among these putative target sites. Specifically, we used miRTarCLIP to disclose that T to C conversion within position 1-7 and that within position 8-14 of miRNA target sites are significantly different (p value = 0.02), and even more significant when focusing on sites targeted by top 102 highly expressed miRNAs only (p value = 0.01). These results comply with previous findings and further suggest that combining miRNA expression and PAR-CLIP data can improve accuracy of the miRNA target prediction. Conclusion: To sum up, we devised a systematic approach for mining miRNA-target sites from CLIP-seq and PAR-CLIP sequencing data, and integrated the workflow with a graphical web-based browser, which provides a user friendly interface and detailed annotations of MTIs. We also showed through real-life examples that miRTarCLIP is a powerful tool for understanding miRNAs. Our integrated tool can be accessed online freely at http://miRTarCLIP.mbc.nctu.edu.tw.
引用
收藏
页数:11
相关论文
共 35 条
[1]   doRiNA: a database of RNA interactions in post-transcriptional regulation [J].
Anders, Gerd ;
Mackowiak, Sebastian D. ;
Jens, Marvin ;
Maaskola, Jonas ;
Kuntzagk, Andreas ;
Rajewsky, Nikolaus ;
Landthaler, Markus ;
Dieterich, Christoph .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D180-D186
[2]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[3]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[4]   Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps [J].
Chi, Sung Wook ;
Zang, Julie B. ;
Mele, Aldo ;
Darnell, Robert B. .
NATURE, 2009, 460 (7254) :479-486
[5]   PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data [J].
Corcoran, David L. ;
Georgiev, Stoyan ;
Mukherjee, Neelanjan ;
Gottwein, Eva ;
Skalsky, Rebecca L. ;
Keene, Jack D. ;
Ohler, Uwe .
GENOME BIOLOGY, 2011, 12 (08)
[6]   Non-coding RNAs in human disease [J].
Esteller, Manel .
NATURE REVIEWS GENETICS, 2011, 12 (12) :861-874
[7]   Discovering microRNAs from deep sequencing data using miRDeep [J].
Friedlaender, Marc R. ;
Chen, Wei ;
Adamidi, Catherine ;
Maaskola, Jonas ;
Einspanier, Ralf ;
Knespel, Signe ;
Rajewsky, Nikolaus .
NATURE BIOTECHNOLOGY, 2008, 26 (04) :407-415
[8]   miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades [J].
Friedlaender, Marc R. ;
Mackowiak, Sebastian D. ;
Li, Na ;
Chen, Wei ;
Rajewsky, Nikolaus .
NUCLEIC ACIDS RESEARCH, 2012, 40 (01) :37-52
[9]   Inference of miRNA targets using evolutionary conservation and pathway analysis [J].
Gaidatzis, Dimos ;
van Nimwegen, Erik ;
Hausser, Jean ;
Zavolan, Mihaela .
BMC BIOINFORMATICS, 2007, 8
[10]   Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs [J].
Garcia, David M. ;
Baek, Daehyun ;
Shin, Chanseok ;
Bell, George W. ;
Grimson, Andrew ;
Bartel, David P. .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2011, 18 (10) :1139-U75