We report a hydrothermal synthesis method for MgO shell coatings directly onto the surface of ZnO nanowire arrays. The entire process can be carried out below 100 degrees C. The MgO shells are produced by the addition of 10 mM magnesium nitrate with 0.2 M sodium hydroxide in water, resulting in a shell thickness of up to 8 nm, verified by high resolution transmission electron microscopy. The viability of the MgO layer as a functional element of optoelectronic devices was tested on solid-state organic hole-transporter based dye-sensitized solar cells. Incorporation of the MgO shell into the solar cell resulted in substantive efficiency improvements of over 400% in comparison to the pristine ZnO nanowire based photovoltaics, indicating that electrons can efficiently tunnel through the 'insulating' MgO shell.