Further development of multiple centrality correctors for interior point methods

被引:48
作者
Colombo, Marco [1 ]
Gondzio, Jacek [1 ]
机构
[1] Univ Edinburgh, Sch Math, Edinburgh EH9 3JZ, Midlothian, Scotland
基金
英国科研创新办公室;
关键词
Implementation of interior point methods; Symmetric neighbourhood; Multiple centrality correctors; Higher order methods;
D O I
10.1007/s10589-007-9106-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper addresses the role of centrality in the implementation of interior point methods. We provide theoretical arguments to justify the use of a symmetric neighbourhood, and translate them into computational practice leading to a new insight into the role of re-centering in the implementation of interior point methods. Second-order correctors, such as Mehrotra's predictor-corrector, can occasionally fail: we derive a remedy to such difficulties from a new interpretation of multiple centrality correctors. Through extensive numerical experience we show that the proposed centrality correcting scheme leads to noteworthy savings over second-order predictor-corrector technique and previous implementations of multiple centrality correctors.
引用
收藏
页码:277 / 305
页数:29
相关论文
共 19 条
[11]   ON IMPLEMENTING MEHROTRA'S PREDICTOR-CORRECTOR INTERIOR-POINT METHOD FOR LINEAR PROGRAMMING [J].
Lustig, Irvin J. ;
Marsten, Roy E. ;
Shanno, David F. .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (03) :435-449
[12]   Convergence conditions and Krylov subspace-based corrections for primal-dual interior-point method [J].
Mehrotra, S ;
Li, ZF .
SIAM JOURNAL ON OPTIMIZATION, 2005, 15 (03) :635-653
[13]   ON THE IMPLEMENTATION OF A PRIMAL-DUAL INTERIOR POINT METHOD [J].
Mehrotra, Sanjay .
SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (04) :575-601
[14]   ON ADAPTIVE-STEP PRIMAL-DUAL INTERIOR-POINT ALGORITHMS FOR LINEAR-PROGRAMMING [J].
MIZUNO, S ;
TODD, MJ ;
YE, YY .
MATHEMATICS OF OPERATIONS RESEARCH, 1993, 18 (04) :964-981
[15]  
ORTEGA J., 1970, ITERATIVE SOLUTION N
[16]  
SALAHI M, 2005, 20054 ADVO1 MCMAST U
[17]   The Mehrotra predictor-corrector interior-point method as a perturbed composite Newton method [J].
Tapia, R ;
Zhang, Y ;
Saltzman, M ;
Weiser, A .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (01) :47-56
[18]   A primal-dual interior point method whose running time depends only on the constraint matrix [J].
Vavasis, SA ;
Ye, YY .
MATHEMATICAL PROGRAMMING, 1996, 74 (01) :79-120
[19]  
Wright S., 1997, Primal-dual interior-point methods