Integration of Reactive Polymeric Nanofilms Into a Low-Power Electromechanical Switch for Selective Chemical Sensing

被引:19
作者
Arora, William J. [1 ]
Tenhaeff, Wyatt E. [2 ]
Gleason, Karen K. [2 ]
Barbastathis, George [3 ]
机构
[1] MIT, Inst Soldier Nanotechnol, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Inst Soldier Nanotechnol, Dept Chem Engn, Cambridge, MA 02139 USA
[3] MIT, Inst Soldier Nanotechnol, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Chemical-vapor deposition (CVD); microsensors; thin films; three-dimensional nanomanufacturing; VAPOR-DEPOSITION; CANTILEVER ARRAY; CALORIMETRY; DESIGN;
D O I
10.1109/JMEMS.2008.2008529
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents the fabrication and demonstration of an ultrathin microelectromechanical chemical sensing device. Microcantilevers are etched from 100-nm-thick silicon nitride, and a 75-nm-thick reactive copolymer film for sensing is deposited by initiated chemical vapor deposition. Cross-linking densities of the polymer films are controlled during the deposition process; it is shown that greater cross-linking densities yield greater cantilever deflections upon the polymer's reaction with the analyte. Considering that chemical reactions are necessary for stress formation, the sensing is selective. Cantilever deflections of greater than 3 mu m are easily attained, which allow a simple switch to be designed with resistance-based outputs. When exposed to a hexylamine vapor-phase concentration of 0.87 mol%, the resistance of the switch drops by over six orders of magnitude with a response time of less than 90 s. [2008-0132]
引用
收藏
页码:97 / 102
页数:6
相关论文
共 20 条
[1]   Micromachined piezoresistive cantilever array with integrated resistive microheater for calorimetry and mass detection [J].
Abedinov, N ;
Grabiec, P ;
Gotszalk, T ;
Ivanov, T ;
Voigt, J ;
Rangelow, IW .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2001, 19 (06) :2884-2888
[2]   Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array [J].
Adams, JD ;
Parrott, G ;
Bauer, C ;
Sant, T ;
Manning, L ;
Jones, M ;
Rogers, B ;
McCorkle, D ;
Ferrell, TL .
APPLIED PHYSICS LETTERS, 2003, 83 (16) :3428-3430
[3]   Membrane folding by helium ion implantation for three-dimensional device fabrication [J].
Arora, William J. ;
Sijbrandij, Sybren ;
Stern, Lewis ;
Notte, John ;
Smith, Henry I. ;
Barbastathis, George .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (06) :2184-2187
[4]   Membrane folding to achieve three-dimensional nanostructures: Nanopatterned silicon nitride folded with stressed chromium hinges [J].
Arora, WJ ;
Nichol, AJ ;
Smith, HI ;
Barbastathis, G .
APPLIED PHYSICS LETTERS, 2006, 88 (05) :1-3
[5]   Design and performance of a microcantilever-based hydrogen sensor [J].
Baselt, DR ;
Fruhberger, B ;
Klaassen, E ;
Cemalovic, S ;
Britton, CL ;
Patel, SV ;
Mlsna, TE ;
McCorkle, D ;
Warmack, B .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 88 (02) :120-131
[6]   A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and bending readout [J].
Battiston, FM ;
Ramseyer, JP ;
Lang, HP ;
Baller, MK ;
Gerber, C ;
Gimzewski, JK ;
Meyer, E ;
Güntherodt, HJ .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 77 (1-2) :122-131
[7]  
BAXAMUSA S, UNPUB
[8]   Initiated chemical vapor deposition of linear and cross-linked poly(2-hydroxyethyl methacrylate) for use as thin-film hydrogels [J].
Chan, K ;
Gleason, KK .
LANGMUIR, 2005, 21 (19) :8930-8939
[9]   Detection and classification of volatile organic amines and carboxylic acids using arrays of carbon black-dendrimer composite vapor detectors [J].
Gao, T ;
Tillman, ES ;
Lewis, NS .
CHEMISTRY OF MATERIALS, 2005, 17 (11) :2904-2911
[10]   Conducting polymers in electronic chemical sensors [J].
Janata, J ;
Josowicz, M .
NATURE MATERIALS, 2003, 2 (01) :19-24