Motion Coherent Tracking Using Multi-label MRF Optimization

被引:176
作者
Tsai, David [1 ,2 ]
Flagg, Matthew [1 ,2 ]
Nakazawa, Atsushi [3 ]
Rehg, James M. [1 ,2 ]
机构
[1] Georgia Inst Technol, Sch Interact Comp, Ctr Behav Imaging, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Interact Comp, Computat Percept Lab, Atlanta, GA 30332 USA
[3] Osaka Univ, Cybermedia Ctr, Toyonaka, Osaka 5600043, Japan
基金
美国国家科学基金会;
关键词
Video object segmentation; Visual tracking; Markov random field; Motion coherence; Combinatoric optimization; Biotracking; GRAPH CUTS; BEHAVIOR; EXTRACTION;
D O I
10.1007/s11263-011-0512-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel off-line algorithm for target segmentation and tracking in video. In our approach, video data is represented by a multi-label Markov Random Field model, and segmentation is accomplished by finding the minimum energy label assignment. We propose a novel energy formulation which incorporates both segmentation and motion estimation in a single framework. Our energy functions enforce motion coherence both within and across frames. We utilize state-of-the-art methods to efficiently optimize over a large number of discrete labels. In addition, we introduce a new ground-truth dataset, called Georgia Tech Segmentation and Tracking Dataset (GT-SegTrack), for the evaluation of segmentation accuracy in video tracking. We compare our method with several recent on-line tracking algorithms and provide quantitative and qualitative performance comparisons.
引用
收藏
页码:190 / 202
页数:13
相关论文
共 49 条
[31]   Approximate labeling via graph cuts based on linear programming [J].
Komodakis, Nikos ;
Tziritas, Georgios .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (08) :1436-1453
[32]  
Lempitsky V., 2007, IEEE Conference on Computer Vision and Pattern Recognition, P1, DOI DOI 10.1109/CVPR.2007.383293
[33]   Video object cut and paste [J].
Li, Y ;
Sun, J ;
Shum, HY .
ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03) :595-600
[34]   A portrait of locomotor behaviour in Drosophila determined by a video-tracking paradigm [J].
Martin, JR .
BEHAVIOURAL PROCESSES, 2004, 67 (02) :207-219
[35]  
Price B.L., 2009, Proc. of ICCV
[36]   Tracking deforming objects using particle filtering for geometric active contours [J].
Rathi, Yogesh ;
Vaswani, Namrata ;
Tannenbaum, Allen ;
Yezzi, Anthony .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2007, 29 (08) :1470-1475
[37]  
Ren X., 2007, IEEE C COMP VIS PATT
[38]   GrabCut - Interactive foreground extraction using iterated graph cuts [J].
Rother, C ;
Kolmogorov, V ;
Blake, A .
ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03) :309-314
[39]   A Combinatorial Solution for Model-Based Image Segmentation and Real-Time Tracking [J].
Schoenemann, Thomas ;
Cremers, Daniel .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (07) :1153-1164
[40]  
SHI JB, 1994, 1994 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS, P593, DOI 10.1109/CVPR.1994.323794