The influence of temperature on a nutty-cake structural material: LiMn1-xFexPO4 composite with LiFePO4 core and carbon outer layer for lithium-ion battery

被引:36
作者
Huo, Zhen-Qing [1 ]
Cui, Yu-Ting [1 ]
Wang, Dan [1 ]
Dong, Yue [1 ]
Chen, Li [1 ]
机构
[1] Tianjin Univ, Dept Chem, Tianjin 300072, Peoples R China
关键词
Cathode material; Ion diffusion; Nutty-cake structure; Lithium-ion batteries; ENHANCED ELECTROCHEMICAL PERFORMANCE; ADVANCED CATHODE MATERIAL; ELECTRODE MATERIALS; LIMNPO4; NANORODS; FE; MN;
D O I
10.1016/j.jpowsour.2013.06.148
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The extremely low electronic conductivity, slow ion diffusion kinetics, and the Jahn-Teller effect of LiMnPO4 limit its electrochemical performance. In this work, a nutty-cake structural C-LiMn1-xFexPO4 -LiFePO4 cathode material is synthesized by hydrothermal method and further calcined at different temperatures. The influence of calcination temperature on the electrochemical behavior is investigated by X-ray diffractometer, scanning electron microscope, field-emission high-resolution transmission electron microscope, energy-dispersive X-ray spectroscopy, electrochemical impedance spectroscopy and charge discharge tests. And the performance of C-LiMn1-xFexPO4-LiFePO4 materials has a relationship with its crystal structure. The well-crystallized Sample-600 calcined at 600 degrees C shows the smallest charge transfer resistance, the largest lithium ion diffusion coefficient (D-Li) and the best cycling stability. The discharge capacity of Sample-600 holds around 112 mAh g(-1) after the 3rd cycle at 0.1 C rate. The performances improvement of C-LiMn1-xFexPO4-LiFePO4 material can be mainly attributed to the iron diffusion from the LiFePO4 core to the outer LiMnPO4 layer under appropriate calcination temperature. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:331 / 336
页数:6
相关论文
共 29 条
[1]   High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells [J].
Amine, K ;
Liu, J ;
Belharouak, I .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) :669-673
[2]   Enhanced electrochemical properties of LiFe1-xMnxPO4/C composites synthesized from FePO4•2H2O nanocrystallites [J].
Chen, Li ;
Yuan, Yong-Qiang ;
Feng, Xia ;
Li, Ming-Wei .
JOURNAL OF POWER SOURCES, 2012, 214 :344-350
[3]   Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process [J].
Cui, Yan ;
Zhao, Xiaoli ;
Guo, Ruisong .
ELECTROCHIMICA ACTA, 2010, 55 (03) :922-926
[4]   Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials [J].
Delacourt, C ;
Laffont, L ;
Bouchet, R ;
Wurm, C ;
Leriche, JB ;
Morcrette, M ;
Tarascon, JM ;
Masquelier, C .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :A913-A921
[5]   KINETIC-ANALYSIS OF THERMAL-DECOMPOSITION REACTIONS .6. THERMAL-DECOMPOSITION OF MANGANESE(II) ACETATE TETRAHYDRATE [J].
DIEFALLAH, EM .
THERMOCHIMICA ACTA, 1992, 202 :1-16
[6]   Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries [J].
Fang, Haisheng ;
Yi, Huihua ;
Hu, Chenglin ;
Yang, Bin ;
Yao, Yaochun ;
Ma, Wenhui ;
Dai, Yongnian .
ELECTROCHIMICA ACTA, 2012, 71 :266-269
[7]   Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material [J].
Islam, MS ;
Driscoll, DJ ;
Fisher, CAJ ;
Slater, PR .
CHEMISTRY OF MATERIALS, 2005, 17 (20) :5085-5092
[8]   Battery materials for ultrafast charging and discharging [J].
Kang, Byoungwoo ;
Ceder, Gerbrand .
NATURE, 2009, 458 (7235) :190-193
[9]   Carbon Coated LiMnPO4 Nanorods for Lithium Batteries [J].
Kumar, P. Ramesh ;
Venkateswarlu, M. ;
Misra, Manjusri ;
Mohanty, Amar K. ;
Satyanarayana, N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :A227-A230
[10]   Enhanced electrochemical performance of <30 nm thin LiMnPO4 nanorods with a reduced amount of carbon as a cathode for lithium ion batteries [J].
Kwon, Nam Hee ;
Fromm, Katharina M. .
ELECTROCHIMICA ACTA, 2012, 69 :38-44