Compensation of BRG-1 function by Brm - Insight into the role of the core SWI-SNF subunits in retinoblastoma tumor suppressor signaling

被引:90
作者
Strobeck, MW
Reisman, DN
Gunawardena, RW
Betz, BL
Angus, SP
Kundsen, KE
Kowalik, TF
Weissman, BE
Knudsen, ES [1 ]
机构
[1] Univ Cincinnati, Coll Med, Dept Cell Biol, Vontz Ctr Mol Studies, Cincinnati, OH 45267 USA
[2] Univ N Carolina, Dept Pathol & Lab Med, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[4] Univ Massachusetts, Sch Med, Program Immunol & Virol, Worcester, MA 01655 USA
关键词
D O I
10.1074/jbc.M109532200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The BRG-1 subunit of the (SWISNF)-S-. complex is involved in chromatin remodeling and has been implicated in the action of the retinoblastoma tumor suppressor (RB). Given the importance of BRG-1 in RB function, germ line BRG-1 mutations in tumorigenesis may be tantamount to RB inactivation. Therefore, in this study we assessed the behavior of cells harboring discrete BRG-1 alleles for the RB-signaling pathway. Using p16ink4a, an upstream activator of endogenous RB, or a constitutively active RB construct (PSM-RB), we determined that the majority of tumor lines with germ line defects in BRG-1 were sensitive to RB-mediated cell cycle arrest. By contrast, A427 (lung carcinoma) cells were resistant to expression of p16ink4a and PSM-RB. Analysis of the (SWISNF)-S-. subunits in the different tumor lines revealed that A427 are deficient for BRG-1 and its homologue, Brm, whereas RB-sensitive cell lines retained Brm expression. Similarly, the RB-resistant SW13 and C33A cell lines were also deficient for both BRG-1/Brm. Reintroduction of either BRG-1 or Brm into A427 or C33A cells restored RB-mediated signaling to cyclin A to cause cell cycle arrest. Consistent with this compensatory role, we observed that Brm could also drive expression of CD44. We also determined that loss of these core (SWISNF)-S-. subunits renders SW13 cells resistant to activation of the RB pathway by the chemotherapeutic agent cisplatin, since reintroduction of either BRG-1 or Brm into SW13 cells restored the cisplatin DNA-damage checkpoint. Together, these data demonstrate that Brm can compensate for BRG-1 loss as pertains to RB sensitivity.
引用
收藏
页码:4782 / 4789
页数:8
相关论文
共 61 条
[1]   The retinoblastoma protein pathway in cell cycle control and cancer [J].
Bartek, J ;
Bartkova, J ;
Lukas, J .
EXPERIMENTAL CELL RESEARCH, 1997, 237 (01) :1-6
[2]  
Bartkova J, 1997, Prog Cell Cycle Res, V3, P211
[3]   BRCA1 is associated with a human SWI/SNF-related complex: Linking chromatin remodeling to breast cancer [J].
Bochar, DA ;
Wang, L ;
Beniya, H ;
Kinev, A ;
Xue, YT ;
Lane, WS ;
Wang, WD ;
Kashanchi, F ;
Shiekhattar, R .
CELL, 2000, 102 (02) :257-265
[4]   Analysis of site-specific phosphorylation of the retinoblastoma protein during cell cycle progression [J].
Boylan, JF ;
Sharp, DM ;
Leffet, L ;
Bowers, A ;
Pan, WJ .
EXPERIMENTAL CELL RESEARCH, 1999, 248 (01) :110-114
[5]   Retinoblastoma protein recruits histone deacetylase to repress transcription [J].
Brehm, A ;
Miska, EA ;
McCance, DJ ;
Reid, JL ;
Bannister, AJ ;
Kouzarides, T .
NATURE, 1998, 391 (6667) :597-601
[6]   A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes [J].
Bultman, S ;
Gebuhr, T ;
Yee, D ;
La Mantia, C ;
Nicholson, J ;
Gilliam, A ;
Randazzo, F ;
Metzger, D ;
Chambon, P ;
Crabtree, G ;
Magnuson, T .
MOLECULAR CELL, 2000, 6 (06) :1287-1295
[7]   Role of human cytomegalovirus immediate-early proteins in cell growth control [J].
Castillo, JP ;
Yurochko, AD ;
Kowalik, TF .
JOURNAL OF VIROLOGY, 2000, 74 (17) :8028-8037
[8]   HIGH-EFFICIENCY TRANSFORMATION OF MAMMALIAN-CELLS BY PLASMID DNA [J].
CHEN, C ;
OKAYAMA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2745-2752
[9]   c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function [J].
Cheng, SWG ;
Davies, KP ;
Yung, E ;
Beltran, RJ ;
Yu, J ;
Kalpana, GV .
NATURE GENETICS, 1999, 22 (01) :102-105
[10]   Cisplatin: From DNA damage to cancer chemotherapy [J].
Cohen, SM ;
Lippard, SJ .
PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY, VOL 67, 2001, 67 :93-130