Iron-oxygen vacancy defect association in polycrystalline iron-modified PbZrO3 antiferroelectrics:: Multifrequency electron paramagnetic resonance and Newman superposition model analysis

被引:48
作者
Mestric, Hrvoje
Eichel, Ruediger-A. [1 ]
Dinse, Klaus-Peter
Ozarowski, Andrew
van Tol, Johan
Brunel, Louis Claude
Kungl, Hans
Hoffmann, Michael J.
Schoenau, Kristin A.
Knapp, Michael
Fuess, Hartmut
机构
[1] Tech Univ Darmstadt, Eduard Zintl Inst, D-64287 Darmstadt, Germany
[2] Florida State Univ, Natl High Magnet Field Lab, Ctr Interdisciplinary Magnet Resonance, Tallahassee, FL 32310 USA
[3] Univ Karlsruhe, Inst Ceram Mech Engn, D-76131 Karlsruhe, Germany
关键词
D O I
10.1103/PhysRevB.73.184105
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
By utilizing multifrequency electron paramagnetic resonance (EPR) spectroscopy, the iron functional center in Fe3+-modified polycrystalline lead zirconate (PbZrO3) was studied. The single phase polycrystalline sample remained orthorhombic and antiferroelectric down to 20 K as confirmed by high-resolution synchrotron powder diffraction. The Fe3+ ions were identified as substituting for Zr4+ at the B-site of the perovskite ABO(3) lattice. Similarly as found for Fe3+:PbTiO3 [Mestric , Phys. Rev. B 71, 134109 (2005)], the value of the fine-structure (FS) parameter B-2(0) is only consistent with a model in which a charged (Fe-Zr(')-V-O(center dot center dot))(center dot) defect associate is formed. In contrast to a well defined iron functional center in lead titanate (PbTiO3) with FS parameters exhibiting variances of less than 3%, a strong broadening of the EPR powder pattern was observed in lead zirconate, indicating a much larger variance of FS parameters. It is suggested that the apparent broad distribution of fine-structure parameters arises from the system's capability to realize different oxygen vacancy positions in the first coordination shell around the iron site. This proposed model of a small number of distinct iron-oxygen vacancy sites is supported by the observation that corresponding B-2(0) and orthorhombic B-2(2) FS parameters of these sites are anticorrelated, a property not expected for random distributions of fine-structure parameters.
引用
收藏
页数:10
相关论文
共 48 条
[11]   Multi-frequency EPR study of Cr3+ doped lead titanate (PbTiO3) nanopowders [J].
Erdem, E ;
Böttcher, R ;
Semmelhack, HC ;
Gläsel, HJ ;
Hartmann, E .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2003, 239 (02) :R7-R9
[12]   A CORRECTION FOR POWDER DIFFRACTION PEAK ASYMMETRY DUE TO AXIAL DIVERGENCE [J].
FINGER, LW ;
COX, DE ;
JEPHCOAT, AP .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1994, 27 :892-900
[13]   CRYSTAL-STRUCTURE DETERMINATION OF ANTIFERROELECTRIC PBZRO3 - APPLICATION OF PROFILE ANALYSIS METHOD TO POWDER METHOD OF X-RAY AND NEUTRON-DIFFRACTION [J].
FUJISHITA, H ;
SHIOZAKI, Y ;
ACHIWA, N ;
SAWAGUCHI, E .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (11) :3583-3591
[14]   Crystal structure and order parameters in the phase transition of antiferroelectric PbZrO3 [J].
Fujishita, H ;
Ishikawa, Y ;
Tanaka, S ;
Ogawaguchi, A ;
Katano, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (06) :1426-1435
[15]   A STUDY OF STRUCTURAL PHASE-TRANSITIONS IN ANTIFERROELECTRIC PBZRO3 BY NEUTRON-DIFFRACTION [J].
FUJISHITA, H ;
HOSHINO, S .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1984, 53 (01) :226-234
[16]  
Grachev V. G., 1987, Soviet Physics - JETP, V65, P1029
[17]   FATIGUE MECHANISMS IN THIN-FILM PZT MEMORY MATERIALS [J].
GUTTLER, B ;
BISMAYER, U ;
GROVES, P ;
SALJE, E .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1995, 10 (03) :245-248
[18]   XSophe-Sophe-XeprView®.: A computer simulation software suite (v. 1.1.3) for the analysis of continuous wave EPR spectra [J].
Hanson, GR ;
Gates, KE ;
Noble, CJ ;
Griffin, M ;
Mitchell, A ;
Benson, S .
JOURNAL OF INORGANIC BIOCHEMISTRY, 2004, 98 (05) :903-916
[19]   Ultrawide band multifrequency high-field EMR technique: A methodology for increasing spectroscopic information [J].
Hassan, AK ;
Pardi, LA ;
Krzystek, J ;
Sienkiewicz, A ;
Goy, P ;
Rohrer, M ;
Brunel, LC .
JOURNAL OF MAGNETIC RESONANCE, 2000, 142 (02) :300-312
[20]  
Jaffe B., 1971, Piezoelectric Ceramics