Controlling Spontaneous Emission with Plasmonic Optical Patch Antennas

被引:219
作者
Belacel, C. [1 ,2 ,3 ]
Habert, B. [4 ]
Bigourdan, F. [4 ]
Marquier, F. [4 ]
Hugonin, J. -P. [4 ]
de Vasconcellos, S. Michaelis [1 ]
Lafosse, X. [1 ]
Coolen, L. [2 ,3 ]
Schwob, C. [2 ,3 ]
Javaux, C. [5 ]
Dubertret, B. [5 ]
Greffet, J. -J. [4 ]
Senellart, P. [1 ]
Maitre, A. [2 ,3 ]
机构
[1] CNRS, Lab Photon & Nanostruct, UPR20, F-91460 Marcoussis, France
[2] Univ Paris 06, INSP, UMR 7588, F-75015 Paris, France
[3] INSP, CNRS, UMR7588, F-75015 Paris, France
[4] Univ Paris 11, CNRS, Inst Opt, Lab Charles Fabry, F-91127 Palaiseau, France
[5] ESPCI, CNRS, UMR8213, Lab Phys & Etud Mat, F-75231 Paris, France
关键词
Plasmonic antenna; quantum dot; Purcell effect; deterministic positioning; SINGLE-PHOTON EMISSION; QUANTUM-DOT; ROOM-TEMPERATURE; FLUORESCENCE; NANOANTENNA; LIGHT;
D O I
10.1021/nl3046602
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We experimentally demonstrate the control of the spontaneous emission rate and the radiation pattern of colloidal quantum dots deterministically positioned in a plasmonic patch antenna. The antenna consists of a thin gold microdisk separated from a planar gold layer by a few tens of nanometers thick dielectric layer. The emitters are shown to radiate through the entire patch antenna in a highly directional and vertical radiation pattern. Strong acceleration of spontaneous emission is observed, depending on the antenna geometry. Considering the double dipole structure of the emitters, this corresponds to a Purcell factor up to 80 for dipoles perpendicular to the disk.
引用
收藏
页码:1516 / 1521
页数:6
相关论文
共 32 条
[1]   Enhancement and quenching of single-molecule fluorescence [J].
Anger, P ;
Bharadwaj, P ;
Novotny, L .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[2]   Three-dimensional analysis of cylindrical microresonators based on the aperiodic Fourier modal method [J].
Armaroli, Andrea ;
Morand, Alain ;
Benech, Pierre ;
Bellanca, Gaetano ;
Trillo, Stefano .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2008, 25 (03) :667-675
[3]  
Borgström MT, 2005, NANO LETT, V5, P1439, DOI 10.1021/nl050802y
[4]   A highly efficient single-photon source based on a quantum dot in a photonic nanowire [J].
Claudon, Julien ;
Bleuse, Joel ;
Malik, Nitin Singh ;
Bazin, Maela ;
Jaffrennou, Perine ;
Gregersen, Niels ;
Sauvan, Christophe ;
Lalanne, Philippe ;
Gerard, Jean-Michel .
NATURE PHOTONICS, 2010, 4 (03) :174-177
[5]   Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna [J].
Curto, Alberto G. ;
Volpe, Giorgio ;
Taminiau, Tim H. ;
Kreuzer, Mark P. ;
Quidant, Romain ;
van Hulst, Niek F. .
SCIENCE, 2010, 329 (5994) :930-933
[6]   Controlled Light-Matter Coupling for a Single Quantum Dot Embedded in a Pillar Microcavity Using Far-Field Optical Lithography [J].
Dousse, A. ;
Lanco, L. ;
Suffczynski, J. ;
Semenova, E. ;
Miard, A. ;
Lemaitre, A. ;
Sagnes, I. ;
Roblin, C. ;
Bloch, J. ;
Senellart, P. .
PHYSICAL REVIEW LETTERS, 2008, 101 (26)
[7]   Ultrabright source of entangled photon pairs [J].
Dousse, Adrien ;
Suffczynski, Jan ;
Beveratos, Alexios ;
Krebs, Olivier ;
Lemaitre, Aristide ;
Sagnes, Isabelle ;
Bloch, Jacqueline ;
Voisin, Paul ;
Senellart, Pascale .
NATURE, 2010, 466 (7303) :217-220
[8]  
Edwards D.F., 1985, Handbook of optical constants of solids
[9]   Three-dimensional orientation measurements of symmetric single chromophores using polarization microscopy [J].
Empedocles, SA ;
Neuhauser, R ;
Bawendi, MG .
NATURE, 1999, 399 (6732) :126-130
[10]   Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal [J].
Englund, D ;
Fattal, D ;
Waks, E ;
Solomon, G ;
Zhang, B ;
Nakaoka, T ;
Arakawa, Y ;
Yamamoto, Y ;
Vuckovic, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)