Negatome 2.0: a database of non-interacting proteins derived by literature mining, manual annotation and protein structure analysis

被引:114
作者
Blohm, Philipp [1 ,2 ]
Frishman, Goar [1 ]
Smialowski, Pawel [1 ,3 ]
Goebels, Florian [3 ]
Wachinger, Benedikt [1 ,2 ]
Ruepp, Andreas [1 ]
Frishman, Dmitrij [1 ,3 ]
机构
[1] HMGU German Res Ctr Environm Hlth, Inst Bioinformat & Syst Biol MIPS, D-85764 Neuherberg, Germany
[2] Clueda AG, D-80687 Munich, Germany
[3] Tech Univ Munich, Dept Genome Oriented Bioinformat, D-85350 Freising Weihenstephan, Germany
关键词
EXTRACTION; NEGATION; DOMAIN; PDB;
D O I
10.1093/nar/gkt1079
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Knowledge about non-interacting proteins (NIPs) is important for training the algorithms to predict protein-protein interactions (PPIs) and for assessing the false positive rates of PPI detection efforts. We present the second version of Negatome, a database of proteins and protein domains that are unlikely to engage in physical interactions (available online at http://mips.helmholtz-muenchen.de/proj/ppi/negatome). Negatome is derived by manual curation of literature and by analyzing three-dimensional structures of protein complexes. The main methodological innovation in Negatome 2.0 is the utilization of an advanced text mining procedure to guide the manual annotation process. Potential non-interactions were identified by a modified version of Excerbt, a text mining tool based on semantic sentence analysis. Manual verification shows that nearly a half of the text mining results with the highest confidence values correspond to NIP pairs. Compared to the first version the contents of the database have grown by over 300%.
引用
收藏
页码:D396 / D400
页数:5
相关论文
共 27 条
  • [21] The Negatome database: a reference set of non-interacting protein pairs
    Smialowski, Pawel
    Pagel, Philipp
    Wong, Philip
    Brauner, Barbara
    Dunger, Irmtraud
    Fobo, Gisela
    Frishman, Goar
    Montrone, Corinna
    Rattei, Thomas
    Frishman, Dmitrij
    Ruepp, Andreas
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 : D540 - D544
  • [22] 3did: identification and classification of domain-based interactions of known three-dimensional structure
    Stein, Amelie
    Ceol, Arnaud
    Aloy, Patrick
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 : D718 - D723
  • [23] Estimating the size of the human interactome
    Stumpf, Michael P. H.
    Thorne, Thomas
    de Silva, Eric
    Stewart, Ronald
    An, Hyeong Jun
    Lappe, Michael
    Wiuf, Carsten
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (19) : 6959 - 6964
  • [24] Negative protein-protein interaction datasets derived from large-scale two-hybrid experiments
    Trabuco, Leonardo G.
    Betts, Matthew J.
    Russell, Robert B.
    [J]. METHODS, 2012, 58 (04) : 343 - 348
  • [25] The Development of a Universal In Silico Predictor of Protein-Protein Interactions
    Valente, Guilherme T.
    Acencio, Marcio L.
    Martins, Cesar
    Lemke, Ney
    [J]. PLOS ONE, 2013, 8 (05):
  • [26] SIFTS: Structure Integration with Function, Taxonomy and Sequences resource
    Velankar, Sameer
    Dana, Jose M.
    Jacobsen, Julius
    van Ginkel, Glen
    Gane, Paul J.
    Luo, Jie
    Oldfield, Thomas J.
    O'Donovan, Claire
    Martin, Maria-Jesus
    Kleywegt, Gerard J.
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) : D483 - D489
  • [27] Simple sequence-based kernels do not predict protein-protein interactions
    Yu, Jiantao
    Guo, Maozu
    Needham, Chris J.
    Huang, Yangchao
    Cai, Lu
    Westhead, David R.
    [J]. BIOINFORMATICS, 2010, 26 (20) : 2610 - 2614