Design and characterization of immobilized enzymes in microfluidic systems

被引:233
作者
Mao, HB [1 ]
Yang, TL [1 ]
Cremer, PS [1 ]
机构
[1] Texas A&M Univ, Dept Chem, College Stn, TX 77842 USA
关键词
D O I
10.1021/ac010822u
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Herein we report the fabrication, characterization, and use of total analytical microsystems containing surface-immobilized enzymes. Streptavidin-conjugated alkaline phosphatase was linked to biotinylated phospholipid bilayers coated inside poly(dimethylsiloxane) microchannels and borosilicate microcapillary tubes. Rapid determination of enzyme kinetics at many different substrate concentrations was made possible by carrying out laminar flow-controlled dilution on-chip. This allowed Lineweaver-Burk analysis to be performed from a single experiment with all the data collected simultaneously. The results revealed an enzyme turnover number of 51.1 +/- 3.2 s(-1) for this heterogeneous system. Furthermore, the same enzyme immobilization strategy was extended to demonstrate that multiple chemical reactions could be performed in sequence by immobilizing various enzymes in series. Specifically, the presence of glucose was detected by two coupled steps employing immobilized avidinD-conjugated glucose oxidase and streptavidin-conjugated horseradish peroxidase.
引用
收藏
页码:379 / 385
页数:7
相关论文
共 30 条
  • [1] MOBILITY MEASUREMENT BY ANALYSIS OF FLUORESCENCE PHOTOBLEACHING RECOVERY KINETICS
    AXELROD, D
    KOPPEL, DE
    SCHLESSINGER, J
    ELSON, E
    WEBB, WW
    [J]. BIOPHYSICAL JOURNAL, 1976, 16 (09) : 1055 - 1069
  • [2] SIMPLE METHOD FOR PREPARATION OF HOMOGENEOUS PHOSPHOLIPID VESICLES
    BARENHOLZ, Y
    GIBBES, D
    LITMAN, BJ
    GOLL, J
    THOMPSON, TE
    CARLSON, FD
    [J]. BIOCHEMISTRY, 1977, 16 (12) : 2806 - 2810
  • [3] An integrated nanoliter DNA analysis device
    Burns, MA
    Johnson, BN
    Brahmasandra, SN
    Handique, K
    Webster, JR
    Krishnan, M
    Sammarco, TS
    Man, PM
    Jones, D
    Heldsinger, D
    Mastrangelo, CH
    Burke, DT
    [J]. SCIENCE, 1998, 282 (5388) : 484 - 487
  • [4] Microchip-based capillary electrophoresis for immunoassays: Analysis of monoclonal antibodies and theophylline
    Chiem, N
    Harrison, DJ
    [J]. ANALYTICAL CHEMISTRY, 1997, 69 (03) : 373 - 378
  • [5] Monoclonal antibody binding affinity determined by microchip-based capillary electrophoresis
    Chiem, NH
    Harrison, DJ
    [J]. ELECTROPHORESIS, 1998, 19 (16-17) : 3040 - 3044
  • [6] Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems
    Chiu, DT
    Jeon, NL
    Huang, S
    Kane, RS
    Wargo, CJ
    Choi, IS
    Ingber, DE
    Whitesides, GM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) : 2408 - 2413
  • [7] 2-DIMENSIONAL CRYSTALS OF STREPTAVIDIN ON BIOTINYLATED LIPID LAYERS AND THEIR INTERACTIONS WITH BIOTINYLATED MACROMOLECULES
    DARST, SA
    AHLERS, M
    MELLER, PH
    KUBALEK, EW
    BLANKENBURG, R
    RIBI, HO
    RINGSDORF, H
    KORNBERG, RD
    [J]. BIOPHYSICAL JOURNAL, 1991, 59 (02) : 387 - 396
  • [8] Patterned delivery of immunoglobulins to surfaces using microfluidic networks
    Delamarche, E
    Bernard, A
    Schmid, H
    Michel, B
    Biebuyck, H
    [J]. SCIENCE, 1997, 276 (5313) : 779 - 781
  • [9] Generation of gradients having complex shapes using microfluidic networks
    Dertinger, SKW
    Chiu, DT
    Jeon, NL
    Whitesides, GM
    [J]. ANALYTICAL CHEMISTRY, 2001, 73 (06) : 1240 - 1246
  • [10] Microfabricated centrifugal microfluidic systems: Characterization and multiple enzymatic assays
    Duffy, DC
    Gillis, HL
    Lin, J
    Sheppard, NF
    Kellogg, GJ
    [J]. ANALYTICAL CHEMISTRY, 1999, 71 (20) : 4669 - 4678