Stationary Black Holes: Uniqueness and Beyond

被引:398
作者
Chrusciel, Piotr T. [1 ]
Costa, Joao Lopes [2 ,3 ]
Heusler, Markus [4 ]
机构
[1] Univ Vienna, A-1010 Vienna, Austria
[2] Inst Univ Lisboa ISCTE IUL, Lisbon, Portugal
[3] Univ Tecn Lisboa, Inst Super Tecn, Ctr Anal Matemat Geometria & Sistemas Dinam, Lisbon, Portugal
[4] Univ Zurich, ITP, CH-8057 Zurich, Switzerland
关键词
FLAT SPACELIKE HYPERSURFACE; EINSTEIN-MAXWELL-EQUATIONS; YANG-MILLS SOLITONS; HARRISON-TYPE TRANSFORMATIONS; AXIALLY-SYMMETRIC SOLUTIONS; POSITIVE ENERGY THEOREM; INITIAL DATA SETS; ASYMPTOTICALLY FLAT; DILATON-AXION; HARMONIC MAPS;
D O I
10.12942/lrr-2012-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.
引用
收藏
页数:68
相关论文
共 328 条
[1]   MAGNETICALLY CHARGED BLACK-HOLES AND THEIR STABILITY [J].
AICHELBURG, PC ;
BIZON, P .
PHYSICAL REVIEW D, 1993, 48 (02) :607-615
[2]   Uniqueness of Smooth Stationary Black Holes in Vacuum: Small Perturbations of the Kerr Spaces [J].
Alexakis, S. ;
Ionescu, A. D. ;
Klainerman, S. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 299 (01) :89-127
[3]   HAWKING'S LOCAL RIGIDITY THEOREM WITHOUT ANALYTICITY [J].
Alexakis, Spyros ;
Ionescu, Alexandru D. ;
Klainerman, Sergiu .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (04) :845-869
[4]   On stationary vacuum solutions to the Einstein equations [J].
Anderson, MT .
ANNALES HENRI POINCARE, 2000, 1 (05) :977-994
[5]   On the structure of solutions to the static vacuum Einstein equations [J].
Anderson, MT .
ANNALES HENRI POINCARE, 2000, 1 (06) :995-1042
[6]   The Area of Horizons and the Trapped Region [J].
Andersson, Lars ;
Metzger, Jan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 290 (03) :941-972
[7]  
[Anonymous], 1990, Relativity on curved manifolds
[8]  
[Anonymous], 1983, SEMIRIEMANNIAN GEOME
[9]  
[Anonymous], BLACK HOLES RELATIVI
[10]  
[Anonymous], 1973, LARGE SCALE STRUCTUR