Stationary Black Holes: Uniqueness and Beyond

被引:398
作者
Chrusciel, Piotr T. [1 ]
Costa, Joao Lopes [2 ,3 ]
Heusler, Markus [4 ]
机构
[1] Univ Vienna, A-1010 Vienna, Austria
[2] Inst Univ Lisboa ISCTE IUL, Lisbon, Portugal
[3] Univ Tecn Lisboa, Inst Super Tecn, Ctr Anal Matemat Geometria & Sistemas Dinam, Lisbon, Portugal
[4] Univ Zurich, ITP, CH-8057 Zurich, Switzerland
关键词
FLAT SPACELIKE HYPERSURFACE; EINSTEIN-MAXWELL-EQUATIONS; YANG-MILLS SOLITONS; HARRISON-TYPE TRANSFORMATIONS; AXIALLY-SYMMETRIC SOLUTIONS; POSITIVE ENERGY THEOREM; INITIAL DATA SETS; ASYMPTOTICALLY FLAT; DILATON-AXION; HARMONIC MAPS;
D O I
10.12942/lrr-2012-7
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.
引用
收藏
页数:68
相关论文
共 328 条
[91]   Area-Angular-Momentum Inequality for Axisymmetric Black Holes [J].
Dain, Sergio ;
Reiris, Martin .
PHYSICAL REVIEW LETTERS, 2011, 107 (05)
[92]   ABSENCE OF STATIC EINSTEIN-YANG-MILLS EXCITATIONS IN 3 DIMENSIONS [J].
DESER, S .
CLASSICAL AND QUANTUM GRAVITY, 1984, 1 (01) :L1-L2
[93]   ABSENCE OF STATIC SOLUTIONS IN SOURCE-FREE YANG-MILLS THEORY [J].
DESER, S .
PHYSICS LETTERS B, 1976, 64 (04) :463-464
[94]   Black holes with only one Killing field [J].
Dias, Oscar J. C. ;
Horowitz, Gary T. ;
Santos, Jorge E. .
JOURNAL OF HIGH ENERGY PHYSICS, 2011, (07)
[95]   NEW BLACK-HOLE SOLUTIONS WITH HAIR [J].
DROZ, S ;
HEUSLER, M ;
STRAUMANN, N .
PHYSICS LETTERS B, 1991, 268 (3-4) :371-376
[96]   MORE ABOUT NON-LINEAR SIGMA-MODELS ON SYMMETRIC-SPACES [J].
EICHENHERR, H ;
FORGER, M .
NUCLEAR PHYSICS B, 1980, 164 (03) :528-535
[97]  
Eichmair M, 2009, J DIFFER GEOM, V83, P551
[98]   A rotating black ring solution in five dimensions [J].
Emparan, R ;
Reall, HS .
PHYSICAL REVIEW LETTERS, 2002, 88 (10) :4
[99]  
Emparan R., 2010, JHEP, V04, P046
[100]   Black rings [J].
Emparan, Roberto ;
Reall, Harvey S. .
CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (20) :R169-R197