Area-Angular-Momentum Inequality for Axisymmetric Black Holes

被引:41
作者
Dain, Sergio [1 ,2 ]
Reiris, Martin [2 ]
机构
[1] Univ Nacl Cordoba, FaMAF, Inst Fis Enrique BodyGaviola IFEG, CONICET, RA-5000 Cordoba, Argentina
[2] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany
关键词
MINIMAL-SURFACES; CURVATURE; MANIFOLDS;
D O I
10.1103/PhysRevLett.107.051101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the local inequality A >= 8 pi vertical bar J vertical bar, where A and J are the area and angular momentum of any axially symmetric closed stable minimal surface in an axially symmetric maximal initial data. From this theorem it is proved that the inequality is satisfied for any surface on complete asymptotically flat maximal axisymmetric data. In particular it holds for marginal or event horizons of black holes. Hence, we prove the validity of this inequality for all dynamical (not necessarily near equilibrium) axially symmetric black holes.
引用
收藏
页数:4
相关论文
共 9 条
[1]   Horizon area-angular momentum inequality for a class of axially symmetric black holes [J].
Acena, Andres ;
Dain, Sergio ;
Gabach Clement, Maria E. .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (10)
[2]   A lower bound for the mass of axisymmetric connected black hole data sets [J].
Chrusciel, Piotr T. ;
Luc Nguyen .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (12)
[3]  
CLEMENT MEG, ARXIV11023834
[4]  
Dain S, 2008, J DIFFER GEOM, V79, P33
[5]   Extreme throat initial data set and horizon area-angular momentum inequality for axisymmetric black holes [J].
Dain, Sergio .
PHYSICAL REVIEW D, 2010, 82 (10)
[6]   A Universal Inequality for Axisymmetric and Stationary Black Holes with Surrounding Matter in the Einstein-Maxwell Theory [J].
Hennig, Joerg ;
Cederbaum, Carla ;
Ansorg, Marcus .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 293 (02) :449-467
[7]   A NUMERICAL STUDY OF PENROSE-LIKE INEQUALITIES IN A FAMILY OF AXIALLY SYMMETRIC INITIAL DATA [J].
Jaramillo, J. L. ;
Vasset, N. ;
Ansorg, M. .
SPANISH RELATIVITY MEETING, ERE2007: RELATIVISTIC ASTROPHYSICS AND COSMOLOGY, 2008, 30 (257-260) :257-+
[8]  
MEEKS W, 1982, ANN MATH, V116, P621
[9]   EXISTENCE OF INCOMPRESSIBLE MINIMAL SURFACES AND THE TOPOLOGY OF THREE DIMENSIONAL MANIFOLDS WITH NONNEGATIVE SCALAR CURVATURE [J].
SCHOEN, R ;
YAU, ST .
ANNALS OF MATHEMATICS, 1979, 110 (01) :127-142