Classification and Comparison of Small RNAs from Plants

被引:627
作者
Axtell, Michael J. [1 ,2 ]
机构
[1] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
[2] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
来源
ANNUAL REVIEW OF PLANT BIOLOGY, VOL 64 | 2013年 / 64卷
基金
美国国家科学基金会;
关键词
microRNA; siRNA; Arabidopsis; DIRECTED DNA-METHYLATION; TRANS-ACTING SIRNAS; NATURAL ANTISENSE TRANSCRIPTS; GENOME-WIDE ANALYSIS; ARABIDOPSIS-THALIANA; MESSENGER-RNA; TRANSLATIONAL REPRESSION; TRANSPOSABLE ELEMENTS; SUPEROXIDE-DISMUTASE; ENDOGENOUS SIRNAS;
D O I
10.1146/annurev-arplant-050312-120043
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Regulatory small RNAs, which range in size from 20 to 24 nucleotides, are ubiquitous components of endogenous plant transcriptomes, as well as common responses to exogenous viral infections and introduced double-stranded RNA (dsRNA). Endogenous small RNAs derive from the processing of helical RNA precursors and can be categorized into several groups based on differences in biogenesis and function. A major distinction can be observed between small RNAs derived from single-stranded precursors with a hairpin structure [referred to here as hairpin RNAs (hpRNAs)] and those derived from dsRNA precursors [small interfering RNAs (siRNAs)]. hpRNAs in plants can be divided into two secondary groups: microRNAs and those that are not microRNAs. The currently known siRNAs fall mostly into one of three secondary groups: heterochromatic siRNAs, secondary siRNAs, and natural antisense transcript siRNAs. Tertiary subdivisions can be identified within many of the secondary classifications as well. Comparisons between the different classes of plant small RNAs help to illuminate key goals for future research.
引用
收藏
页码:137 / 159
页数:23
相关论文
共 124 条
[31]   Functional Specialization of the Plant miR396 Regulatory Network through Distinct MicroRNA-Target Interactions [J].
Debernardi, Juan M. ;
Rodriguez, Ramiro E. ;
Mecchia, Martin A. ;
Palatnik, Javier F. .
PLOS GENETICS, 2012, 8 (01)
[32]   miRNA-Mediated Gene Silencing by Translational Repression Followed by mRNA Deadenylation and Decay [J].
Djuranovic, Sergej ;
Nahvi, Ali ;
Green, Rachel .
SCIENCE, 2012, 336 (6078) :237-240
[33]   Conifers have a unique small RNA silencing signature [J].
Dolgosheina, Elena V. ;
Morin, Ryan D. ;
Aksay, Gozde ;
Sahinalp, S. Cenk ;
Magrini, Vincent ;
Mardis, Elaine R. ;
Mattsson, Jim ;
Unrau, Peter J. .
RNA, 2008, 14 (08) :1508-1515
[34]   Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases [J].
Dugas, Diana V. ;
Bartel, Bonnie .
PLANT MOLECULAR BIOLOGY, 2008, 67 (04) :403-417
[35]   RETRACTED: An endogenous, systemic RNAi pathway in plants (Retracted article. See vol. 34, pg. 2596, 2015) [J].
Dunoyer, Patrice ;
Brosnan, Christopher A. ;
Schott, Gregory ;
Wang, Yu ;
Jay, Florence ;
Alioua, Abdelmalek ;
Himber, Christophe ;
Voinnet, Olivier .
EMBO JOURNAL, 2010, 29 (10) :1699-1712
[36]  
Eamens AL, 2011, METHODS MOL BIOL, V701, P179, DOI 10.1007/978-1-61737-957-4_10
[37]   Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis [J].
Fahlgren, Noah ;
Montgomery, Talowa A. ;
Howell, Miya D. ;
Allen, Edwards ;
Dvorak, Sarah K. ;
Alexander, Amanda L. ;
Carrington, James C. .
CURRENT BIOLOGY, 2006, 16 (09) :939-944
[38]   MicroRNA Gene Evolution in Arabidopsis lyrata and Arabidopsis thaliana [J].
Fahlgren, Noah ;
Jogdeo, Sanjuro ;
Kasschau, Kristin D. ;
Sullivan, Christopher M. ;
Chapman, Elisabeth J. ;
Laubinger, Sascha ;
Smith, Lisa M. ;
Dasenko, Mark ;
Givan, Scott A. ;
Weigel, Detlef ;
Carrington, James C. .
PLANT CELL, 2010, 22 (04) :1074-1089
[39]  
Fahlgren N, 2010, METHODS MOL BIOL, V592, P51, DOI 10.1007/978-1-60327-005-2_4
[40]   Target mimicry provides a new mechanism for regulation of microRNA activity [J].
Franco-Zorrilla, Jose Manuel ;
Valli, Adrian ;
Todesco, Marco ;
Mateos, Isabel ;
Puga, Maria Isabel ;
Rubio-Somoza, Ignacio ;
Leyva, Antonio ;
Weigel, Detlef ;
Garcia, Juan Antonio ;
Paz-Ares, Javier .
NATURE GENETICS, 2007, 39 (08) :1033-1037